Numerical Simulation on the Residual Stress of Compression Bushing in Cold Expansion Strengthening
LIN Zhongliang1,2,3, BAI Qingshun1,*, TANG Wei2,3, WU Baoquan1, LIU Yexin2,3, LAN Yang2,3
1 School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China 2 Tianjin Key Laboratory of Fastening Technology, Tianjin 300300, China 3 Aerospace Precision Products Co., Ltd., Tianjin 300300, China
Abstract: The residual stress distribution strengthened by cold expansion of hole bushing plays an important role in achieving excellent extrusion effect, while the material of compressed part and the interference value have a significant impact on the distribution of extrusion residual stress. According to the theory of non-linear contact friction, a three-dimensional finite element model based on cold expansion strengthening of compression bushing was established. The tangential residual stress distribution of lug was obtained with the simulation model in terms of various mate-rials, TB6 titanium alloy, 7050 aluminum alloy and TC4 titanium alloy. The model and simulation results were validated with the experiments of residual stress testing. Moreover, the influence of interference value on the residual stress state in cold extrusion strengthening was also explored. Results also revealed the distribution of tangential residual stress of the squeezed surface, the middle surface, the expansion surface and the bushing thickness direction. It is shown from the research results that the residual stress is unevenly distributed along the thickness of the hole wall after cold expansion and the tangential residual compressive stress has the widest distribution area in the middle surface. The increase of the interference value can expand the distribution range of compressive stress to some extent and increase the value of regional compressive stress. However, the increase of the interference value can also produce partial tension stress, leading to wrinkle effect. Under the same extrusion conditions, the tangential residual compressive stress produced by cold extrusion of TB6 titanium alloy lug has obvious advantages in stress value and distribution area.
1 Gopalakrishna H D, Narasimha M H N, Krishna M, et al. Engineering Failure Analysis, 2010, 17(2), 361. 2 Zhang T L, Wang Z, Song D C, et al. Journal of Mechanical Enginee-ring, 2021, 57(15), 71(in Chinese). 张铁亮, 王卓, 宋镝冲, 等. 机械工程学报, 2021, 57(15), 71. 3 Brown M A, Evans J L. International Journal of Fatigue, 2012, 44, 177. 4 Wang Y L, Zhu Y L, Cao Q, et al. Acta Aeronautica et Astronautica Si-nica, 2018, 39(2), 6(in Chinese). 王燕礼, 朱有利, 曹强, 等. 航空学报, 2018, 39(2), 6. 5 Qian X M, Jiang Y F, Guan H B, et al. Journal of Mechanical Strength, 2011, 33(5), 749(in Chinese). 钱晓明, 姜银方, 管海兵, 等. 机械强度, 2011, 33(5), 749. 6 Du X, Zhang T, He Y T, et al. Acta Aeronautica et Astronautica Sinica, 2019, 40(4), 268(in Chinese). 杜旭, 张腾, 何宇廷, 等. 航空学报, 2019, 40(4), 268. 7 Liu Y S, Shao X J, Liu J, et al. Materials & Design, 2010, 31, 1208. 8 Huo L B, Cao Z Q, Zhang F, et al. Journal of Northwestern Polytechnical University, 2018, 36(4), 701(inChinese). 霍鲁斌, 曹增强, 张帆, 等. 西北工业大学学报, 2018, 36(4), 701. 9 Zheng G, Cao Z Q, Zuo Y J. International Journal of Fatigue, 2021, 148, 106253. 10 Fan J, Li F G, Li J, et al. Rare Metal Materials and Engineering, 2012, 41(6), 978(in Chinese). 范娟, 李付国, 李江, 等. 稀有金属材料与工程, 2012, 41(6), 978. 11 Hu D Y, Li W Z, Liu H, et al. Journal of Aerospace Power, 2020, 35(11), 2241(in Chinese). 胡殿印, 李雯竹, 刘辉, 等. 航空动力学报, 2020, 35(11), 2241. 12 Liu H, Hu D Y, Wang R Q, et al. International Journal of Fatigue, 2020, 132, 105390. 13 Jin S Z, Hu D Y, Liu H, et al. Journal of Aerospace Power, 2020, 35(1), 30(in Chinese). 靳盛哲, 胡殿印, 刘辉, 等. 航空动力学报, 2020, 35(1), 30. 14 Nigrelli V, Pasta S. Journal of Materials Processing Technology, 2008, 205(1-3), 290. 15 Fu Y C, Ge E D, Su H H, et al. Chinese Journal of Aeronautics, 2015, 28(4), 961. 16 Miao H, Mei Q, Yuan J Y, et al. Chinese Journal of Mechanical Engineering, 2016, 29(3), 556. 17 Qiang C, Xia X S, Yuan B G, et al. Materials Science & Engineering A, 2013, 588, 395. 18 Zhu Y L, Hou S, Wang Y L, et al. Materials Science and Technology, 2015, 23(4), 87(in Chinese). 朱有利, 侯帅, 王燕礼, 等. 材料科学与工艺, 2015, 23(4), 87. 19 China Aviation Material Handbook Editorial Committee. China aviation material handbook, China Standard Press, China, 2001, pp.104(in Chinese). 中国航空材料手册编辑委员会. 中国航空材料手册, 中国标准出版社, 2001, pp.104. 20 Liu X L, Gao Y K, Liu Y T, et al. Journal of Aeronautical Materials, 2011, 31(2), 24(in Chinese). 刘晓龙, 高玉魁, 刘蕴韬, 等. 航空材料学报, 2011, 31(2), 24. 21 Zhang X H, Xu G Q, Nie L, et al. Materials Science and Technology, 2019, 27(4), 64(in Chinese). 张小辉, 许光群, 聂利, 等. 材料科学与工艺, 2019, 27(4), 64. 22 Cao Z Q, Hu C Y, Gan X D, et al. Journal of Mechanical Strength, 2016, 38(5), 1093(in Chinese). 曹增强, 胡朝阳, 甘学东, 等. 机械强度, 2016, 38(5), 1093. 23 Wang L Q, Bian J, Zhang H, et al. Journal of Aeronautical Materials, 2020, 40(6), 45(in Chinese). 王连庆, 卞江, 张晗, 等. 航空材料学报, 2020, 40(6), 45. 24 Huo L B, Cao Z Q, Cao Y J, et al. Aeronautical Manufacturing Techno-logy, 2018, 61(13), 74(in Chinese). 霍鲁斌, 曹增强, 曹跃杰, 等. 航空制造技术, 2018, 61(13), 74. 25 Cong Z, Cao Y, He Z H, et al. Science Technology and Engineering, 2021, 21(16), 6637(in Chinese). 从政, 曹岩, 贺志昊, 等. 科学技术与工程, 2021, 21(16), 6637.