Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 145-148    https://doi.org/10.11896/j.issn.1005-023X.2017.015.022
  铁电及铁磁材料 |
基于新型鼓包法测试NiFe2O4薄膜的力磁性能*
孙长振1, 何元东1, 毛卫国1, 顾阳1, 毛贻齐2, 张宏龙3, 陈彦飞3, 裴永茂3, 方岱宁4
1 湘潭大学材料科学与工程学院, 湘潭 411105;
2 湖南大学机械与运载工程学院, 长沙410082;
3 北京大学工学院,北京100871;
4 北京理工大学先进结构技术研究院, 北京100081;
Analysis of Mechanical-magnetic Coupling Characteristics of NiFe2O4 Thin Film Based on Modified Bulge Tests
SUN Changzhen1, HE Yuandong1, MAO Weiguo1, GU Yang1 , MAO Yiqi2, ZHANG Honglong3, CHEN Yanfei3, PEI Yongmao3, FANG Daining4
1 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105;
2 College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082;
3 College of Engineering, Peking University, Beijing 100871;
4 Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081;
下载:  全 文 ( PDF ) ( 1496KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为表征NiFe2O4(NFO)薄膜材料的力磁性能,利用自主研发的新型多场耦合鼓包测试系统和发展的铁磁材料鼓包力磁本构方程,采用溶胶-凝胶法和化学腐蚀法制备了NFO薄膜鼓包样品,并在不同力磁条件下研究了NFO薄膜力磁耦合性能。结果表明,在外加磁场为0 Oe时,NFO薄膜弹性模量和残余应力分别为187.8 GPa和500.8 MPa。随着外加磁场的增大,NFO薄膜弹性模量由0 Oe时的187.8 GPa逐渐增大到800 Oe时的484.6 GPa;磁致伸缩系数由200 Oe时的-94.2×10-6增大到800 Oe时的-326.2×10-6。当鼓包油压由0 kPa增大到50 kPa时,NFO薄膜剩余磁化强度降低75%,矫顽磁场降低44%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙长振
何元东
毛卫国
顾阳
毛贻齐
张宏龙
陈彦飞
裴永茂
方岱宁
关键词:  铁磁薄膜  鼓包测试  弹性模量  残余应力  磁致伸缩系数    
Abstract: A modified multiple functional bulge apparatus andbulge mechanical-magnetic constitutive equation were introduced to study the mechanical-magnetic characteristics of NiFe2O4 (NFO) film materials. NFO thin film bulge samples were prepared by sol-gel and chemical etching methods. Magneto-mechanical characteristics of NFO thin film were studied under different mechanical and magnetic loads. The results show that residual stress and elastic modulus of NFO thin films were about 500.8 MPa and 187.8 GPa, respectively, under no external magnetic field state. As the magnetic field increased from 0 Oe to 800 Oe,the elastic modulus increased from 187.8 GPa to 484.6 GPa. The corresponding magnetostriction coefficient varies from -94.2×10-6 to -326.2×10-6 with the increase of applied magnetic fields from 200 Oe to 800 Oe.When the bulge oil pressure changes from 0 kPa to 50 kPa, the residual polarization of NFO film decreased by 75% and the coercive field decreased by 44%.
Key words:  ferromagnetic thin film    bulge test    elastic modulus    residual stress    magnetostriction coefficient
出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  O341  
基金资助: *国家自然科学基金(11272276;11572277;11302004);湖南省自然科学基金杰出青年基金(14JJ1020);国家重大科学仪器设备开发专项(2012YQ03007502)
作者简介:  孙长振:男,1991年生,硕士研究生,研究方向为智能材料力学性能表征及仪器设备研制 E-mail:scz2010205443@126.com 毛卫国:通讯作者,男,1979年生,博士,教授,博士研究生导师,研究方向为智能材料力学性能表征及仪器设备研制 E-mail:ssamao@126.com
引用本文:    
孙长振, 何元东, 毛卫国, 顾阳, 毛贻齐, 张宏龙, 陈彦飞, 裴永茂, 方岱宁. 基于新型鼓包法测试NiFe2O4薄膜的力磁性能*[J]. 《材料导报》期刊社, 2017, 31(15): 145-148.
SUN Changzhen, HE Yuandong, MAO Weiguo, GU Yang , MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Analysis of Mechanical-magnetic Coupling Characteristics of NiFe2O4 Thin Film Based on Modified Bulge Tests. Materials Reports, 2017, 31(15): 145-148.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.022  或          https://www.mater-rep.com/CN/Y2017/V31/I15/145
1 Yang X, Zhou Z, et al. Recent advances in multiferroic oxide he-terostructures and devices[J]. J Mater Chem C,2016,4 (2):234.
2 Tatarogˇlu A, Al-Ghamdi A A, El-Tantawy F, et al. Analysis of interface states of FeO-Al2O3 spinel composite film/p-Si diode by conductance technique[J]. Appl Phys A,2016,122(3):1.
3 Richter P, Plassmeyer P N, Harzdorf J, et al. High quality magne-tic oxide thin films prepared via aqueous solution processing[J]. Chem Mater,2016,28(14):4917.
4 Lüders U, Barthélémy A, Bibes M, et al. NiFe2O4: A versatile spinel material brings new opportunities for spintronics[J]. Adv Mater,2006,18(13):1733.
5 Perron H, Mellier T, Domain C, et al. Structural investigation and electronic properties of the nickel ferrite NiFe2O4: A periodic density functional theory approach[J]. J Phys: Condensed Matter, 2007, 19(34):346219.
6 Lüders U, Bibes M, Bobo J F, et al. Enhanced magnetic moment and conductive behavior in NiFe2O4 spinel ultrathin films[J]. Phys Rev B,2005,71(13):134419.
7 Datta R, Loukya B, et al. Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition[J]. J Cryst Growth,2012, 345(1):44.
8 Rigato F, Estradé S, Arbiol J, et al. Strain-induced stabilization of new magnetic spinel structures in epitaxial oxide heterostructures[J]. Mater Sci Eng B, 2007,144(1):43.
9 Sedlárˇ M, et al. Sol-gel processing and magnetic properties of nickel zinc ferrite thick films[J]. Ceram Int,2000,26(5):507.
10 Zhang X, Liu J, Zhu K, et al. Effects of Mn doping on dielectric and ferroelectric characteristics of lead-free (K, Na, Li)NbO3 thin films grown by chemical solution deposition[J]. J Mater Sci Mater Electron,2017,28(1):487.
11 Sun L, Zhang R, Wang Z, et al. Structural, dielectric and magnetic properties of NiFe2O4 prepared via sol-gel auto-combustion method[J]. J Magn Magn Mater,2017,421:65.
12 Seifikar S, Calandro B, Deeb E, et al. Structural and magnetic pro-perties of biaxially textured NiFe2O4 thin films grown on c-plane sapphire[J]. J Appl Phys,2012,112(12):123910.
13 Varga Z,et al. Magnetic field sensitive functional elastomers with tuneable elastic modulus[J]. Polymer,2006,47(1):227.
14 Panwar K, et al. The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe2O4 thin films[J]. J Magn Magn Mater, 2017,421:25.
15 Yao Q, Luo Z, Li Y, et al. Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resis-tance spot weld[J]. Mater Des,2014,63:200.
16 Dong X, Feng X, Hwang K C. Magnetization in thin film inferred by full-field curvatures based on cantilever beam technique[J]. NDT E Int,2014,63:35.
17 Fu X, Wang G. Surface effects on elastic fields around surface defects[J]. Acta Mech Solida Sin, 2010,23(3):248.
18 方岱宁, 毛卫国, 冯雪, 等. 电磁智能材料力电磁耦合行为的鼓泡实验装置及测试方法: 中国, ZL102645372A[P]. 2012-08-22.
19 毛卫国, 丁佳, 戴翠英, 等. 一种层状电磁薄膜功能材料鼓包试样的制备方法: 中国, ZL103682086A[P]. 2014-03-26.
20 毛卫国, 肖敏, 戴翠英,等. 一种层状电磁薄膜材料鼓包样品的制备方法: 中国, ZL103762307A[P]. 2014-04-30.
21 Seifikar S, Tabei A, Sachet E, et al. Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt (111) via sol-gel processing[J]. J Appl Phys,2012,112(6):063908.
22 NuLi Y N, Qin Q Z. Nanocrystalline transition metal ferrite thin films prepared by an electrochemical route for Li-ion batteries[J]. J Power Sources,2005,142(1-2):292.
23 Liebermann R C. Pressure and temperature dependence of the elastic properties of polycrystalline trevorite (NiFe2O4)[J]. Phys Earth Planetary Interiors,1972,6(5):360.
24 Fritsch D, Ederer C. Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principles[J]. Phys Rev B,2010,82(10):3175.
25 Liu Q, Zhou W, Ding J, et al. Study of mechanical-magnetic and electromagnetic properties of PZT/Ni film systems by a novel bulge technique[J]. J Magn Magn Mater,2017,423:90.
26 Lee E W. Magnetostriction and magnetomechanical effects[J]. Rep Progress Phys,1955,18(1):184.
27 Gualdi A J, et al. Stress magnetization mo-del for magnetostriction in multiferroic composite[J]. J Appl Phys,2013,114(5):053913.
28 Zhu B, et al. Micromagnetic modeling of the effects of stress on magnetic properties[J]. J Appl Phys,2001,89(11):7009.
29 Yang B, Li Z, Gao Y, et al. Multiferroic properties of Bi3.15Nd0.85-Ti3O12-CoFe2O4 bilayer films derived by a sol-gel processing[J]. J Alloys Compd,2011,509(13):4608.
30 Khodaei M, Seyyed Ebrahimi S A, Park Y J, et al. Strong in-plane magnetic anisotropy in (111)-oriented CoFe2O4 thin film[J]. J Magn Magn Mater,2013,340:16.
[1] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[2] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[3] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[4] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[5] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[6] 李超, 周梅, 李杨, 张凯, 郭凌志. 固废粗集料平均弹性模量与混凝土弹性模量的相关性[J]. 材料导报, 2024, 38(4): 22050271-8.
[7] 林忠亮, 白清顺, 唐伟, 吴保全, 刘烨欣, 兰洋. 压合衬套冷挤压强化的残余应力的数值模拟[J]. 材料导报, 2024, 38(3): 22070260-8.
[8] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[9] 陈栋梁, 雷子萱, 徐力, 陈双, 刘育红, 强军锋. 热熔酚醛树脂/玻璃纤维层压板的固化特性及工艺优化[J]. 材料导报, 2024, 38(16): 23050095-8.
[10] 罗军, 李楠, 王曦, 刘昌奎. 纳米压痕法测量航空发动机关键材料残余应力的研究进展[J]. 材料导报, 2024, 38(11): 22100300-13.
[11] 倪彤元, 杜鑫, 莫云波, 黄森乐, 杨杨, 刘金涛. 基于ANN的HVFAC拉伸性能预测评价[J]. 材料导报, 2024, 38(10): 23070117-9.
[12] 耿汝伟, 程延海, 杜军, 魏正英. 2319铝合金电弧增材制造温度场与应力演变研究[J]. 材料导报, 2023, 37(23): 22060214-8.
[13] 屈盛官, 翟荐硕, 段晨风, 孙朋飞, 李小强. TC4钛合金二维超声振动车削性能研究[J]. 材料导报, 2023, 37(22): 22040390-9.
[14] 郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
[15] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed