Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (15): 145-148    https://doi.org/10.11896/j.issn.1005-023X.2017.015.022
  铁电及铁磁材料 |
基于新型鼓包法测试NiFe2O4薄膜的力磁性能*
孙长振1, 何元东1, 毛卫国1, 顾阳1, 毛贻齐2, 张宏龙3, 陈彦飞3, 裴永茂3, 方岱宁4
1 湘潭大学材料科学与工程学院, 湘潭 411105;
2 湖南大学机械与运载工程学院, 长沙410082;
3 北京大学工学院,北京100871;
4 北京理工大学先进结构技术研究院, 北京100081;
Analysis of Mechanical-magnetic Coupling Characteristics of NiFe2O4 Thin Film Based on Modified Bulge Tests
SUN Changzhen1, HE Yuandong1, MAO Weiguo1, GU Yang1 , MAO Yiqi2, ZHANG Honglong3, CHEN Yanfei3, PEI Yongmao3, FANG Daining4
1 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105;
2 College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082;
3 College of Engineering, Peking University, Beijing 100871;
4 Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081;
下载:  全 文 ( PDF ) ( 1496KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为表征NiFe2O4(NFO)薄膜材料的力磁性能,利用自主研发的新型多场耦合鼓包测试系统和发展的铁磁材料鼓包力磁本构方程,采用溶胶-凝胶法和化学腐蚀法制备了NFO薄膜鼓包样品,并在不同力磁条件下研究了NFO薄膜力磁耦合性能。结果表明,在外加磁场为0 Oe时,NFO薄膜弹性模量和残余应力分别为187.8 GPa和500.8 MPa。随着外加磁场的增大,NFO薄膜弹性模量由0 Oe时的187.8 GPa逐渐增大到800 Oe时的484.6 GPa;磁致伸缩系数由200 Oe时的-94.2×10-6增大到800 Oe时的-326.2×10-6。当鼓包油压由0 kPa增大到50 kPa时,NFO薄膜剩余磁化强度降低75%,矫顽磁场降低44%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙长振
何元东
毛卫国
顾阳
毛贻齐
张宏龙
陈彦飞
裴永茂
方岱宁
关键词:  铁磁薄膜  鼓包测试  弹性模量  残余应力  磁致伸缩系数    
Abstract: A modified multiple functional bulge apparatus andbulge mechanical-magnetic constitutive equation were introduced to study the mechanical-magnetic characteristics of NiFe2O4 (NFO) film materials. NFO thin film bulge samples were prepared by sol-gel and chemical etching methods. Magneto-mechanical characteristics of NFO thin film were studied under different mechanical and magnetic loads. The results show that residual stress and elastic modulus of NFO thin films were about 500.8 MPa and 187.8 GPa, respectively, under no external magnetic field state. As the magnetic field increased from 0 Oe to 800 Oe,the elastic modulus increased from 187.8 GPa to 484.6 GPa. The corresponding magnetostriction coefficient varies from -94.2×10-6 to -326.2×10-6 with the increase of applied magnetic fields from 200 Oe to 800 Oe.When the bulge oil pressure changes from 0 kPa to 50 kPa, the residual polarization of NFO film decreased by 75% and the coercive field decreased by 44%.
Key words:  ferromagnetic thin film    bulge test    elastic modulus    residual stress    magnetostriction coefficient
               出版日期:  2017-08-10      发布日期:  2018-05-04
ZTFLH:  O341  
基金资助: *国家自然科学基金(11272276;11572277;11302004);湖南省自然科学基金杰出青年基金(14JJ1020);国家重大科学仪器设备开发专项(2012YQ03007502)
作者简介:  孙长振:男,1991年生,硕士研究生,研究方向为智能材料力学性能表征及仪器设备研制 E-mail:scz2010205443@126.com 毛卫国:通讯作者,男,1979年生,博士,教授,博士研究生导师,研究方向为智能材料力学性能表征及仪器设备研制 E-mail:ssamao@126.com
引用本文:    
孙长振, 何元东, 毛卫国, 顾阳, 毛贻齐, 张宏龙, 陈彦飞, 裴永茂, 方岱宁. 基于新型鼓包法测试NiFe2O4薄膜的力磁性能*[J]. 《材料导报》期刊社, 2017, 31(15): 145-148.
SUN Changzhen, HE Yuandong, MAO Weiguo, GU Yang , MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Analysis of Mechanical-magnetic Coupling Characteristics of NiFe2O4 Thin Film Based on Modified Bulge Tests. Materials Reports, 2017, 31(15): 145-148.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.015.022  或          http://www.mater-rep.com/CN/Y2017/V31/I15/145
1 Yang X, Zhou Z, et al. Recent advances in multiferroic oxide he-terostructures and devices[J]. J Mater Chem C,2016,4 (2):234.
2 Tatarogˇlu A, Al-Ghamdi A A, El-Tantawy F, et al. Analysis of interface states of FeO-Al2O3 spinel composite film/p-Si diode by conductance technique[J]. Appl Phys A,2016,122(3):1.
3 Richter P, Plassmeyer P N, Harzdorf J, et al. High quality magne-tic oxide thin films prepared via aqueous solution processing[J]. Chem Mater,2016,28(14):4917.
4 Lüders U, Barthélémy A, Bibes M, et al. NiFe2O4: A versatile spinel material brings new opportunities for spintronics[J]. Adv Mater,2006,18(13):1733.
5 Perron H, Mellier T, Domain C, et al. Structural investigation and electronic properties of the nickel ferrite NiFe2O4: A periodic density functional theory approach[J]. J Phys: Condensed Matter, 2007, 19(34):346219.
6 Lüders U, Bibes M, Bobo J F, et al. Enhanced magnetic moment and conductive behavior in NiFe2O4 spinel ultrathin films[J]. Phys Rev B,2005,71(13):134419.
7 Datta R, Loukya B, et al. Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition[J]. J Cryst Growth,2012, 345(1):44.
8 Rigato F, Estradé S, Arbiol J, et al. Strain-induced stabilization of new magnetic spinel structures in epitaxial oxide heterostructures[J]. Mater Sci Eng B, 2007,144(1):43.
9 Sedlárˇ M, et al. Sol-gel processing and magnetic properties of nickel zinc ferrite thick films[J]. Ceram Int,2000,26(5):507.
10 Zhang X, Liu J, Zhu K, et al. Effects of Mn doping on dielectric and ferroelectric characteristics of lead-free (K, Na, Li)NbO3 thin films grown by chemical solution deposition[J]. J Mater Sci Mater Electron,2017,28(1):487.
11 Sun L, Zhang R, Wang Z, et al. Structural, dielectric and magnetic properties of NiFe2O4 prepared via sol-gel auto-combustion method[J]. J Magn Magn Mater,2017,421:65.
12 Seifikar S, Calandro B, Deeb E, et al. Structural and magnetic pro-perties of biaxially textured NiFe2O4 thin films grown on c-plane sapphire[J]. J Appl Phys,2012,112(12):123910.
13 Varga Z,et al. Magnetic field sensitive functional elastomers with tuneable elastic modulus[J]. Polymer,2006,47(1):227.
14 Panwar K, et al. The effect of Cr substitution on the structural, electronic and magnetic properties of pulsed laser deposited NiFe2O4 thin films[J]. J Magn Magn Mater, 2017,421:25.
15 Yao Q, Luo Z, Li Y, et al. Effect of electromagnetic stirring on the microstructures and mechanical properties of magnesium alloy resis-tance spot weld[J]. Mater Des,2014,63:200.
16 Dong X, Feng X, Hwang K C. Magnetization in thin film inferred by full-field curvatures based on cantilever beam technique[J]. NDT E Int,2014,63:35.
17 Fu X, Wang G. Surface effects on elastic fields around surface defects[J]. Acta Mech Solida Sin, 2010,23(3):248.
18 方岱宁, 毛卫国, 冯雪, 等. 电磁智能材料力电磁耦合行为的鼓泡实验装置及测试方法: 中国, ZL102645372A[P]. 2012-08-22.
19 毛卫国, 丁佳, 戴翠英, 等. 一种层状电磁薄膜功能材料鼓包试样的制备方法: 中国, ZL103682086A[P]. 2014-03-26.
20 毛卫国, 肖敏, 戴翠英,等. 一种层状电磁薄膜材料鼓包样品的制备方法: 中国, ZL103762307A[P]. 2014-04-30.
21 Seifikar S, Tabei A, Sachet E, et al. Growth of (111) oriented NiFe2O4 polycrystalline thin films on Pt (111) via sol-gel processing[J]. J Appl Phys,2012,112(6):063908.
22 NuLi Y N, Qin Q Z. Nanocrystalline transition metal ferrite thin films prepared by an electrochemical route for Li-ion batteries[J]. J Power Sources,2005,142(1-2):292.
23 Liebermann R C. Pressure and temperature dependence of the elastic properties of polycrystalline trevorite (NiFe2O4)[J]. Phys Earth Planetary Interiors,1972,6(5):360.
24 Fritsch D, Ederer C. Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principles[J]. Phys Rev B,2010,82(10):3175.
25 Liu Q, Zhou W, Ding J, et al. Study of mechanical-magnetic and electromagnetic properties of PZT/Ni film systems by a novel bulge technique[J]. J Magn Magn Mater,2017,423:90.
26 Lee E W. Magnetostriction and magnetomechanical effects[J]. Rep Progress Phys,1955,18(1):184.
27 Gualdi A J, et al. Stress magnetization mo-del for magnetostriction in multiferroic composite[J]. J Appl Phys,2013,114(5):053913.
28 Zhu B, et al. Micromagnetic modeling of the effects of stress on magnetic properties[J]. J Appl Phys,2001,89(11):7009.
29 Yang B, Li Z, Gao Y, et al. Multiferroic properties of Bi3.15Nd0.85-Ti3O12-CoFe2O4 bilayer films derived by a sol-gel processing[J]. J Alloys Compd,2011,509(13):4608.
30 Khodaei M, Seyyed Ebrahimi S A, Park Y J, et al. Strong in-plane magnetic anisotropy in (111)-oriented CoFe2O4 thin film[J]. J Magn Magn Mater,2013,340:16.
[1] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[2] 郑晓猛, 张永振, 杜三明, 刘建, 杨正海, 逄显娟. 减摩耐磨多层膜设计及研究进展[J]. 材料导报, 2019, 33(3): 444-453.
[3] 聂光临, 包亦望, 田远, 万德田. 水泥砂浆弹性模量随温度的演化规律[J]. 材料导报, 2019, 33(2): 251-256.
[4] 牟信妮, 卢立新, 李国辉. 基于灰关联熵理论的蜂窝纸板面内承载机理及性能影响分析[J]. 材料导报, 2019, 33(12): 2100-2106.
[5] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[6] 韩志勇, 丘珍珍, 史文新. 强流脉冲电子束粘结层表面改性对热障涂层热震及残余应力的影响[J]. 材料导报, 2018, 32(24): 4303-4308.
[7] 贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(16): 2816-2821.
[8] 温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
[9] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[10] 何柏林,金辉,张枝森,谢学涛,丁江灏. SMA490BW钢对接接头高周疲劳性能的机理探究[J]. 《材料导报》期刊社, 2018, 32(12): 2008-2014.
[11] 王建祥,唐新军,何建新,张凌凯. 考虑多因素的浇筑式沥青混凝土动力特性研究[J]. 《材料导报》期刊社, 2018, 32(12): 2085-2090.
[12] 万小梅,张宇,赵铁军,张淑文,程杨杰. 碱激发矿渣混凝土的力学性能[J]. 《材料导报》期刊社, 2018, 32(12): 2091-2095.
[13] 聂光临,包亦望,万德田,田远. 水泥基管材力学性能评价方法[J]. 《材料导报》期刊社, 2018, 32(12): 2072-2077.
[14] 周景隆, 李文晓, 薛鹏. 微孔结构对PMI泡沫准静态压缩性能的影响[J]. 《材料导报》期刊社, 2017, 31(20): 147-151.
[15] 何元东, 孙长振, 毛卫国, 毛贻齐, 张宏龙, 陈彦飞, 裴永茂, 方岱宁. 力电多场鼓包法测定PZT铁电薄膜的横向压电系数*[J]. 《材料导报》期刊社, 2017, 31(15): 139-144.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed