Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 21080126-7    https://doi.org/10.11896/cldb.21080126
  无机非金属及其复合材料 |
Fe3O4-GO复合纳米纸的制备及吸波性能研究
李威霖1, 陈玲2, 王佳3, 袁凯1, 焦剑1,*
1 西北工业大学化学与化工学院,西安 710129
2 河北经贸大学信息技术学院电子信息工程系,石家庄 050062
3 西安超码科技有限公司,西安 710025
Preparation and Microwave Absorption Performance of Fe3O4-GO Composite Buckypaper
LI Weilin1, CHEN Ling2, WANG Jia3, YUAN Kai1, JIAO Jian1,*
1 School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
2 Department of Electronic Information Engineering, College of Information Technology, Hebei University of Economics and Business, Shijiazhuang 050062, China
3 Xi’an Chaoma Technology Co., Ltd., Xi’an 710025, China
下载:  全 文 ( PDF ) ( 17728KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了实现目前实际应用对吸波材料“轻、薄、宽、强”的要求,本工作采用氧化石墨烯(GO)结合磁性纳米粒子四氧化三铁(Fe3O4)构筑了一类新型的轻质且具有良好柔韧性的复合纳米纸吸波材料,希望其能简化复合材料成型工艺并替代吸波涂料,实现对吸波性能的调控。首先,利用γ-氨丙基三乙氧基硅烷(KH-550)对Fe3O4纳米粒子进行有机化修饰,制备了分散均匀、具有电磁双损性能的Fe3O4-GO复合纳米粒子,进而利用溶剂蒸发沉积法制备了GO及Fe3O4-GO纳米纸,并对其结构及性能进行了研究。结果表明,NH2-Fe3O4稳定附着在GO片层上,当Fe3O4与GO的质量比为4 ∶6时,其输入阻抗Zin与自由空间阻抗Z0最为接近,复合纳米纸的阻抗匹配性能最好。Fe3O4-GO复合纳米纸较复合纳米粒子具有更强的吸波性能,当Fe3O4与GO的质量比分别为4 ∶6和5 ∶5时,在2~18 GHz频段内,反射损耗(RL)值均小于-10 dB。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李威霖
陈玲
王佳
袁凯
焦剑
关键词:  氧化石墨烯  四氧化三铁纳米粒子  复合纳米纸  吸波性能    
Abstract: In response to the requirement of light-weight absorbing materials, a new type of flexible composite buckypaper were prepared with graphene oxide (GO) buckypaper and magnetic nanoparticles (Fe3O4) and acted as a lightweight electromagnetic wave absorbing material, which is expected to replace the wave-absorbing paint and simplify the molding process to realize the control of wave-absorbing performance. First, γ-aminopropyltriethoxysilane (KH-550) was used to organically modify Fe3O4 nanoparticles to prepare Fe3O4-GO composite nanoparticles with uniform dispersion and electromagnetic double loss performance, and then GO and Fe3O4-GO buckypapers were prepared by solvent evaporation deposition method. The results show that NH2-Fe3O4 is stably attached to the GO sheet. When the mass ratio of Fe3O4 to GO is 4 ∶6, the input impedance Zin is closest to the free space impedance Z0, which means the impedance matching performance of the composite buckypaper is the best. Furthermore, Fe3O4-GO composite buckypaper has stronger absorbing performance than composite nanoparticles. When the mass ratio of Fe3O4 to GO is 4 ∶6 and 5 ∶5, respectively, the reflection loss(RL) values are less than -10 dB in the 2—18 GHz frequency band.
Key words:  graphene oxide    Fe3O4 nanoparticles    composite buckypaper    wave-absorbing performance
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TB332  
基金资助: 陕西省自然科学基础研究计划(2020JM-087)
通讯作者:  * 焦剑,西北工业大学化学与化工学院教授、博士研究生导师,陕西省复合材料学会会员,中国环氧树脂学会会员。1991年毕业于西北工业大学高分子材料与工程专业,获学士学位;1994年于西北工业大学化学工程系,获材料学硕士学位;2000年于西北工业大学,获材料学博士学位。目前主要研究方向有中空无机纳米粒子的合成及应用、介孔材料的设计在透波材料和二氧化碳吸附材料上的应用以及石墨烯、碳纳米管等在电磁屏蔽材料上的应用等。在Advanced Functional Materials、Chemical Engineering Journal等国内外期刊发表研究论文70余篇(其中SCI、EI索引20余篇),主编与合著教材、专著6部。jjiao@nwpu.edu.cn   
作者简介:  李威霖,2019年6月毕业于西北工业大学,于2019年9月至今在西北工业大学化学与化工学院攻读材料学硕士学位,主要从事吸波复合材料领域的研究。
引用本文:    
李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
LI Weilin, CHEN Ling, WANG Jia, YUAN Kai, JIAO Jian. Preparation and Microwave Absorption Performance of Fe3O4-GO Composite Buckypaper. Materials Reports, 2023, 37(1): 21080126-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080126  或          http://www.mater-rep.com/CN/Y2023/V37/I1/21080126
1 Liu S H, Liu J M, Dong X L, et al. Electromagnetic wave shielding and absorbing materials, Chemical Industry Press, China, 2013, pp. 20(in Chinese).
刘顺华, 刘军民, 董星龙, 等. 电磁波屏蔽及吸波材料, 化学工业出版社, 2013, pp. 20.
2 Liu G, Wang L Y, Cheng J L, et al. Journal of Materials Engineering, 2015, 43(1), 104(in Chinese).
刘顾, 汪刘应, 程建良, 等. 材料工程, 2015, 43(1), 104.
3 Cheng C Y,Pu N W, Liu Y M, et al. Composites Part B: Engineering, 2017, 114, 395.
4 Cheng L, Zhang S, Wang Y, et al. Materials Research Bulletin, 2016, 73, 77.
5 Narayanan T N, Liu Z,Lakshmy P R, et al. Carbon, 2012, 50(3), 1338.
6 Li J, Wei J, Pu Z, et al. Journal of Magnetism, 2016, 399, 81.
7 Hou C L, Li T H, Zhang T K, et al. New Carbon Materials, 2013, 28(3), 184.
8 Xue W D, Zhao R, Du X, et al. Materials Research Bulletin, 2014, 50, 285.
9 Liu P B, Huang Y, Yan J, et al. Journal of Materials Chemistry C, 2016, 4(26), 6362.
10 Zhang Y L, Liu J Y, Guo G B, et al. New Chemical Materials. 2020, 48(9), 12(in Chinese).
张妍兰, 刘金彦, 郭贵宝, 等. 化工新型材料, 2020, 48(9), 12.
11 Li M. Study on preparation and properties of M-type barium ferrite/graphene oxide absorbing material. Master’s Thesis, Tianjin University, China, 2012(in Chinese).
李敏. M型钡铁氧体/氧化石墨烯吸波材料的制备及性能研究. 硕士学位论文, 天津大学, 2012.
12 Liu P B, Huang Y, Wang L, et al. Materials Letters, 2013, 107, 166.
13 Li B Z, Weng X D, Sun X D, et al. Journal of Saudi Chemical Society, 2018, 2, 6.
14 Stankovich S, Dikin D A, Piner R D, at al. Carbon, 2007, 45(7), 1558.
15 Rigueur J L, Hasan S A, Mahajan S V, et al. Carbon, 2010, 48(14), 4090.
16 Macinner M M, Hlynchuk S, Acharya S, et al. ACS Applied Materials & Interfaces, 2018, 10(2), 2004.
17 Behura S K, Mahala P, Nayak S, et al. Journal of Nanoscience & Nanotechnology, 2014, 14(4), 3022.
18 Liang J, Xu Y, Dong S, et al. Journal of Physical Chemistry C, 2010, 114(41), 17465.
19 Jiang X, Zhang R, Yang T, et al. Surface & Coatings Technology, 2016, 299, 22.
20 Wang J X, Wang G, Wang H, et al. Electrochimica Acta, 2015, 182, 192.
21 Xiao C F, Tan Y F, Wang X L, et al. Chemical Physics Letters, 2018, 703, 8.
22 Lu S W, Xu W K, Xiong X H, et al. Journal of Alloys and Compounds, 2014, 606, 171.
23 Wang X, Jiang H T, Yang K Y, et al. Thin Solid Films, 2019, 674, 97.
24 Kim T, Lee J, Lee K, et al. Chemical Engineering Journal, 2018, 361, 1182.
25 Li J, Duan Y, Lu W, et al. Nanotechnology, 2018, 29(15), 155201.
26 Li Q, Chen Z P, Yang X F, et al. Materials Reports B:Research Papers, 2015, 29(5), 28(in Chinese).
李庆, 陈志萍, 杨晓峰, 等. 材料导报:研究篇, 2015, 29(5), 28.
27 Cheng L, Zhang S, Wang Y, et al. Materials Research Bulletin, 2016, 73, 77.
28 Worsley K A, Ramesh P, Mandal S K, et al. Chemical Physics Letters, 2007, 445(1), 51.
29 Niyogi S, Bekyarove E, Itkis M E, et al. Journal of the American Chemical Society, 2006, 128(24), 7720.
30 Jia K, Wang D H, Li K X, et al. Materials Reports A:Review Papers, 2019, 33(3), 805(in Chinese).
贾琨, 王东红, 李克训, 等. 材料导报:综述篇, 2019, 33(3), 805.
31 Li Y, Zhang S, Ni Y. Materials Research Express, 2016, 3(7), 075012.
32 A Mishra, T Mohanty. Integrated Ferroelectrics, 2017, 184, 178.
33 Li B, Weng X, Sun X, et al. Journal of Saudi Chemical Society, 2018, 979.
34 Ma J, Li J, Ni X, et al. Applied Physics Letters, 2009, 95(10), 173117.
35 Yan L, Wang J, Han X, et al. Nanotechnology, 2010, 21(9), 095708.
36 Liang X, Quan B, Ji G, et al. ACS Sustainable Chemistry & Engineering, 2017, 5, 10570.
37 Wang L, Huang Y, Li C, et al. Physical Chemistry Chemical Physics, 2015, 17(3), 2228.
38 He H, Luo F, Qian N, et al. Journal of Applied Physics, 2015, 117(8), 085502.
39 Das S, Nayak G C, Sahu S K, et al. Journal of Magnetism & Magnetic Materials, 2015, 377, 111.
40 Moitra D, Ghosh B K, Chandel M, et al. RSC Advances, 2016, 6(17), 14090.
41 Hu C G, Mou Z Y, Lu G W, et al. Journal of Southeast University, 2015, 31(4), 511.
42 Fu M, Jiao Q Z, Zhao Y. Journal of Materials Chemistry A, 2013, 1, 5577.
43 Ren Y L, Zhu C L, Qi L H, et al. RSC Advances, 2014, 4(41), 21510.
[1] 陈亮, 陈少文, 袁振亮, 李启凡, 马会茹, 陈志宏, 李维, 官建国. 有机氟包覆片状FeSiAl吸收剂及其吸波性能[J]. 材料导报, 2022, 36(9): 21030255-6.
[2] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[3] 李威霖, 王佳, 焦剑. Fe3O4-MWCNTs杂化纳米纸对纤维增强复合材料吸波性能的影响[J]. 材料导报, 2022, 36(5): 20110094-6.
[4] 姚庆达, 梁永贤, 王小卓, 温会涛, 周华龙, 但卫华. GO/CS的结构、性能及其在水处理中的应用研究进展[J]. 材料导报, 2022, 36(4): 20110041-13.
[5] 董健苗, 邹明璇, 周铭, 余浪, 曹嘉威, 庄佳桥, 王留阳, 王慧敏. 石墨烯及氧化石墨烯对水泥基材料水化过程及强度的影响[J]. 材料导报, 2022, 36(24): 21060032-6.
[6] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[7] 梁旭, 韩露, 雷雅京, 黎雯, 黄瑞滨, 陈荣生, 倪红卫, 詹玮婷. 基于氧化石墨烯/ZnO纳米阵列的无酶葡萄糖传感器[J]. 材料导报, 2022, 36(13): 21010061-6.
[8] 张帆, 纪志永, 汪婧, 郭志远, 方嘉炜, 郭小甫, 赵颖颖, 刘杰, 袁俊生. GO/LiMn2O4膜电极构建及其提锂性能研究[J]. 材料导报, 2022, 36(11): 21040052-7.
[9] 张明伟, 曲冠达, 庞梦瑶, 刘瑞, 曹贯宇, 李泽, 陈子帅, 刘景顺. 电磁屏蔽机理及涂敷/结构型吸波复合材料研究进展[J]. 材料导报, 2021, 35(Z1): 62-70.
[10] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[11] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[12] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[13] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[14] 贾琨, 王喆, 王蓬, 王东红, 马晨, 刘伟. 导热吸波材料的研究进展及未来发展方向[J]. 材料导报, 2021, 35(9): 9133-9139.
[15] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed