Please wait a minute...
材料导报  2022, Vol. 36 Issue (19): 21060037-7    https://doi.org/10.11896/cldb.21060037
  无机非金属及其复合材料 |
用于电机散热的定形复合相变材料研究
陈鑫1, 刘凌云1, 陶马冠宇1, 王晓光1, 柳建军2
1 湖北工业大学太阳能高效利用湖北省协同创新中心,武汉 430068
2 襄阳市三三电气有限公司,湖北 枣阳 441200
Study of Composite Phase Change Materials for Heat Dissipation of Motor
CHEN Xin1, LIU Lingyun1, TAO Maguanyu1, WANG Xiaoguang1, LIU Jianjun2
1 Hubei Collaborative Innovation Center for High Efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068, China
2 Xiangyang TTE Electric Co., Ltd., Zaoyang 441200, Hubei, China
下载:  全 文 ( PDF ) ( 9594KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以石蜡作为相变物质,与埃洛石复合,以无水乙醇为溶剂,采用溶液插层法制备出不同配比的新型石蜡/埃洛石复合相变材料。使用扫描电镜(SEM)观察其表面形貌,对材料相变过程中的形状稳定性进行测试,采用差示扫描量热法(DSC)对其相变温度和相变焓进行了测定,用热重分析仪(TGA)对其热稳定性进行了表征;确定石蜡与埃洛石的最佳配比后,添加少量四针状氧化锌(T-ZnOw)提高其导热性能,使用导热仪器测试其导热系数。将复合相变材料与烘干型绝缘漆混合加热并浇注到电机定子绕组上,电机连通电源后使用红外测温仪和温敏电阻测量其温度。结果表明:当石蜡质量分数为50%时,石蜡能被埃洛石有效封装,保证了材料的的定形相变特征,添加T-ZnOw能有效提高材料的导热性能;复合相变材料与烘干型绝缘漆浇注到电机定子绕组上时能有效地降低内部温升,对降低短时高功率密度电机的内部温度和提高其功率密度具有重要的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈鑫
刘凌云
陶马冠宇
王晓光
柳建军
关键词:  石蜡  埃洛石  四针状氧化锌(T-ZnOw)  相变材料  溶液插层法    
Abstract: Anovel composite phase change material (PCM) with various ratio of paraffin/halloysite was prepared by solution intercalated reaction, in which paraffin acted as a PCM, halloysite as a container and absolute alcohol as solvent. Scanning electron microscopy(SEM) was used to observe the surface morphology of the materials. The shape stability during phase change process of this composite was tested. Thermogravimetry analyzer(TGA) and differential scanning calorimetry(DSC) were used to measure the thermal stability, phase-change temperature and phase-transition enthalpy. After determining the optimum ratio of paraffin to halloysite, a small amount of tetrapod ZnO whiskers (T-ZnOw) were added to improve heat conduction performance, and the thermal conductivity was tested. The composite phase change material and drying insulating paint were mixed, heated and poured onto the motor stator windings. After the motor was connected to the power supply, the temperature was recorded with an infrared thermometer and temperature sensitive resistance. The results show that when the mass fraction of paraffin is 50%, the paraffin can be effectively encapsulated by halloysite, thus guaranteeing excellent shape-stabilized phase change feature. The addition of T-ZnOw can effectively improve the heat conduction performance. When the material is poured into the stator winding of the motor, the internal temperature rise can be effectively reduced. The composite materials have an important application value to decrease the internal temperature of the short-time high-power density motor, and to improve the power density of the motor.
Key words:  paraffin    halloysite    tetrapod ZnO whiskers    phase change material    solution intercalated reaction
出版日期:  2022-10-10      发布日期:  2022-10-12
ZTFLH:  TM304  
基金资助: 国家自然科学基金(51171061);湖北省教育厅重点项目(D20201407)
通讯作者:  liulingyun@mail.hbut.edu.cn   
作者简介:  陈鑫,硕士研究生,本科毕业于天津科技大学电子信息与自动化学院。主要从事复合相变在电机散热方面的研究工作。
刘凌云,湖北工业大学教授,2006年于华中科技大学获工学博士学位,2009—2011年在清华大学材料系从事博士后研究工作。研究领域主要涉及人工电磁介质,以及非线性绝缘材料等。近几年来先后主持了国家自然科学基金、总装预研基金、湖北省教育厅基金等项目。发表学术论文50余篇。
引用本文:    
陈鑫, 刘凌云, 陶马冠宇, 王晓光, 柳建军. 用于电机散热的定形复合相变材料研究[J]. 材料导报, 2022, 36(19): 21060037-7.
CHEN Xin, LIU Lingyun, TAO Maguanyu, WANG Xiaoguang, LIU Jianjun. Study of Composite Phase Change Materials for Heat Dissipation of Motor. Materials Reports, 2022, 36(19): 21060037-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060037  或          http://www.mater-rep.com/CN/Y2022/V36/I19/21060037
1 Li L Y, Zhang J P, Yan H Y, et al. Proceedings of the CSEE, 2016, 36(13), 3642 (in Chinese).
李立毅, 张江鹏, 闫海媛, 等. 中国电机工程学报, 2016, 36(13), 3642.
2 Farsane K, Desevaux P, Panday P K. Applied Thermal Engineering, 2000, 20(14), 1321.
3 Shi W, Teng H D. Micromotors, 2020, 53(8), 33 (in Chinese).
师蔚, 滕鸿达. 微电机, 2020, 53(8), 33
4 Wang S N, Li Y H, Li Y Z, et al. Applied Thermal Engineering, 2016, 109, 251.
5 Liu Y X, Li L Y, Cao J W, et al. Transactions of China Electrotechnical Society, 2019, 34(11), 2296 (in Chinese).
刘毓希, 李立毅, 曹继伟, 等. 电工技术学报, 2019, 34(11), 2296.
6 Hao Y G, Shao X K, Liu T X, et al. Thermochimica Acta, 2015, 604, 45.
7 Li B X, Liu T X, Wang Y F. Asian Journal of Chemistry, 2012, 24(9), 4232.
8 Ge Z W, Li B X, Wang Y F, et al. New Chemical Materials, 2013, 41(12), 165 (in Chinese).
葛治微, 李本侠, 王艳芬, 等. 化工新型材料, 2013, 41(12), 165.
9 Ma F, Qin Y, Lu F Y, et al. Journal of Materials Engineering, 2014(10), 71 (in Chinese).
马烽, 秦岩, 陆丰艳, 等. 材料工程, 2014(10), 71.
10 Hao Y G, Shao X K, Tang H D, et al. Journal of Materials Engineering, 2016, 44(11), 51 (in Chinese).
郝勇敢, 邵先坤, 唐海娣, 等. 材料工程, 2016, 44(11), 51.
11 Warzoha R J, Fleischer A S. International Journal of Heat and Mass Transfer, 2014, 79, 314.
12 Mohamed Lachheb, Mustapha Karkri, Fethi Albouchi, et al. Composites, Part B. Engineering, 2014, 66B, 518.
13 Yang H, Mao J, Feng J. Materials Reports, 2010, 24(Z1), 278 (in Chinese).
杨化, 毛健, 冯杰. 材料导报, 2010, 24(Z1), 278.
14 Feng M H. Preparation and properties of high impact polystyrene thermally conductive and insulation composites. Master's Thesis, Guangdong University of Technology, China, 2019 (in Chinese).
冯明晖. 高抗冲聚苯乙烯基导热绝缘复合材料的制备及其性能. 硕士学位论文, 广东工业大学, 2019.
15 Ho C J, Gao J Y. International Communications in Heat and Mass Transfer: A Rapid Communications Journal, 2009, 36(5), 467.
16 Song X L, Kang H, Gao X H, et al. Materials Reports B:Research Papers, 2015, 29(9), 40 (in Chinese).
宋秀龙, 康虹, 高向华, 等. 材料导报:研究篇, 2015, 29(9), 40.
[1] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[2] 王子仪, 张武龙, 王瑞燕, 邓伟新, 吴沂. 石蜡热工介质对混凝土绝热温升的影响[J]. 材料导报, 2022, 36(Z1): 21080274-5.
[3] 张东尧, 白开皓, 李传常. 复合相变织物的制备及应用[J]. 材料导报, 2022, 36(8): 20080153-6.
[4] 魏宁, 铁生年. 功能化碳纳米纤维增强芒硝基相变储能材料的热性能[J]. 材料导报, 2022, 36(6): 21050177-7.
[5] 郑灵钰, 章学来, 纪珺. 定型阻燃相变储热材料的研究进展[J]. 材料导报, 2022, 36(5): 20100275-8.
[6] 何兆益, 谭洋伟, 李家琪, 张权, 吴逸飞. 埃洛石纳米管协效阻燃改性沥青性能及机理研究[J]. 材料导报, 2022, 36(2): 20110080-8.
[7] 蒋自鹏, 张雨, 铁健, 铁生年. 一步法氧化改性纳米碳增强芒硝基复合相变材料热性能[J]. 材料导报, 2022, 36(12): 21030077-6.
[8] 尚明刚, 张云升, 何忠茂, 乔宏霞, 冯琼, 薛翠真, 韩照. 基于双应力的钢筋混凝土恒加试验腐蚀劣化规律研究[J]. 材料导报, 2022, 36(11): 21030289-8.
[9] 吴丽梅, 刘庆欣, 王晓龙, 唐宁, 高丽丽, 胡玲. 相变储能材料研究进展[J]. 材料导报, 2021, 35(Z1): 501-506.
[10] 朱邱豪, 王金金, 董建峰. 高效光学可调谐介质超表面研究进展[J]. 材料导报, 2021, 35(7): 7063-7070.
[11] 孙延勇, 朱伟芳, 缑敏敏, 郭瑞丽. 埃洛石纳米管结构改性后用于Pebax基质中强化气体分离[J]. 材料导报, 2021, 35(6): 6174-6179.
[12] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[13] 吴韶飞, 闫霆, 蒯子函, 潘卫国. 高各向异性十六酸/膨胀石墨定形相变储热材料的性能[J]. 材料导报, 2021, 35(4): 4186-4193.
[14] 王成君, 段志英, 王爱军, 王志超, 崔璐娟, 苏琼. 基于共晶系相变材料的研究进展[J]. 材料导报, 2021, 35(13): 13058-13066.
[15] 马超, 王静, 冀志江, 王永超, 解帅, 李衎, 李飞. 赤藓糖醇基复合相变材料的研究进展[J]. 材料导报, 2021, 35(11): 11179-11187.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed