Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1354-1360    https://doi.org/10.11896/cldb.17120180
  金属与金属基复合材料 |
铸态和挤压态Mg-4Sm-Al-0.3Mn-xZn合金微观组织和力学性能研究
郑嫄1,2, 蔡中义1,2, 程丽任3, 车朝杰1,2, 张洪杰3
1 吉林大学辊锻工艺研究所,长春 130025
2 吉林大学材料科学与工程学院,长春 130025
3 中国科学院长春应用化学研究所,稀土资源利用国家重点实验室,长春 130022
Mg-4Sm-Al-0.3Mn-xZn Alloys
ZHENG Yuan1,2, CAI Zhongyi1,2, CHENG Liren3, CHE Chaojie1,2, ZHANG Hongjie3
1 Roll Forging Research Institute, Jilin University, Changchun 130025
2 College of Materials Science and Engineering, Jilin University, Changchun 130025
3 State Key Laboratory of Rare Earth Resources Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
下载:  全 文 ( PDF ) ( 4517KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过光学显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉伸试验机对铸态和挤压态Mg-4Sm-Al-0.3Mn-xZn (x=0、1、2、3) (质量分数) 合金的微观组织及力学性能进行了研究。铸态、固溶态合金中观察到了Mg-Al-Sm三元析出相,它是一种长条形基面析出相,具有六方结构,其中a=0.556 nm,c=0.521 nm。该相与镁基体的位向关系为:[0001]Mg-Al-Sm‖[0001]α-Mg,[1010]Mg-Al-Sm‖[1120]α-Mg。三种元素的原子比为Mg∶Al∶Sm=98.73∶0.71∶0.56。铸态合金中Mg-4Sm-Al-0.3Mn-3Zn合金具有最佳的拉伸性能,其屈服强度、抗拉强度和延伸率分别为96 MPa、138 MPa和7.2%。挤压态合金中Mg-4Sm-Al-0.3Mn-2Zn合金具有最佳的拉伸性能,其屈服强度、抗拉强度和延伸率分别为269 MPa、298 MPa和16%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑嫄
蔡中义
程丽任
车朝杰
张洪杰
关键词:  Mg-Sm-Al-Mn-Zn  三元相  铸态  挤压态    
Abstract: Microstructures and mechanical properties of as-cast and as-extruded Mg-4Sm-Al-0.3Mn-xZn(x=0, 1, 2, 3) (mass fraction) alloys were investigated by optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile testing machine. The Mg-Al-Sm ternary precipitated phase were observed in as-cast and solution-treated alloys. It is a precipitation phase with hexagonal structure with a=0.556 nm, c=0.521 nm. The orientation relationship between the phase and the magnesium matrix is [0001]Mg-Al-Sm‖[0001]α-Mg,[1010]Mg-Al-Sm‖[1120]α-Mg.The atomic ratio for Mg∶Al∶Sm is 98.73∶0.71∶0.56. The as-cast Mg-4Sm-Al-0.3Mn-3Zn alloy exhibits the best tensile properties with yield strength of 96 MPa, tensile strength of 138 MPa and elongation of 7.2%. The as-extruded Mg-4Sm-Al-0.3Mn-2Zn alloy exhibits the best tensile properties. The yield strength, tensile strength and elongation are 269 MPa, 298 MPa and 16%, respectively.
Key words:  Mg-Sm-Al-Mn-Zn    ternary precipitated phase    as-cast    as-extruded
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TG146.2  
作者简介:  郑嫄,吉林大学硕士研究生,主要研究方向为稀土镁合金。蔡中义,吉林大学,教授。研究方向为材料塑性成型,有限元理论,email: caizy@jlu.edu.cn
引用本文:    
郑嫄, 蔡中义, 程丽任, 车朝杰, 张洪杰. 铸态和挤压态Mg-4Sm-Al-0.3Mn-xZn合金微观组织和力学性能研究[J]. 材料导报, 2019, 33(8): 1354-1360.
ZHENG Yuan, CAI Zhongyi, CHENG Liren, CHE Chaojie, ZHANG Hongjie. Mg-4Sm-Al-0.3Mn-xZn Alloys. Materials Reports, 2019, 33(8): 1354-1360.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120180  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1354
1 Pan Fusheng, Wang Jingfeng, Zhang Zonghe, et al. China Metal Bulletin,2008(2),6(in Chinese).
潘复生,王敬丰,章宗和,等.中国金属通报, 2008(2),6.
2 Ding Wenjiang, Wu Yujuan, Peng Liming, et al. Materials China, 2010(8), 36(in Chinese).
丁文江,吴玉娟,彭立明,等.中国材料进展, 2010(8), 36.
3 Xia Xiangyu, Sun Weihua, Luo Alan, et al.Acta Materialia, 2016, 111,335.
4 Zhu BeiBei, Sun Yangshan, Jia Di, et al. Journal of Southeast University (Natural Science),2009(3),610(in Chinese).
朱蓓蓓,孙扬善,贾迪,等.东南大学学报(自然科学版), 2009(3),610.
5 Masahiko Nishijima, Kenji Hiraga, Michiaki Yamasaki, et al.Materials Transactions,2009,50(7),1747.
6 Zheng Jingxu, Zhou Weimin, Chen Bin. Materials Science and Enginee-ring A—Structural Materials Properties Microstructure and Processing,2016,669,304.
7 Su Xin, Li Dejiang, Xie Yancai, et al. In:Chinese Materials Congress (CMC 2012). Taiyuan, 2012,pp.238.
8 Wang Jianli, Wang Lidong, Wu Yaoming, et al. Materials Science and Engineering A—Structural Materials Properties Microstructure and Proce-ssing,2011,528(12),4115.
9 Wang Cunlong, Dai Jichun, Liu Wencai, et al. Journal of Alloys and Compounds, 2015, 620, 172.
10 Xu C, Zheng M Y, Xu S W, et al. Journal of Alloys and Compounds, 2012, 528, 40.
11 Yuan Ming, Zheng Ziqiao. Journal of Alloys and Compounds, 2014, 590, 355.
12 Nie J F, Oh-ishi K, Gao X, et al. Acta Materialia, 2008, 56(20), 6061.
13 Polmear I.Light alloys. Elsevier,UK, 2006.
14 Buch F V, Lietzau J, Mordike B L, et al. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing, 1999, 263, 1.
15 Huang Xuefei, Li Hongjia,Cai Wupeng, et al. Journal of Alloys and Compounds, 2015, 633, 54.
16 Grobner J,Schmid-Fetzer R.In:Calphad XXVIIIth. Grenoble,1999,pp. 296.
17 Mordike B L.In:8th International Symposium on Physics of Materials. Prague, 2000,pp.103.
18 Xia X, Luo, A A, Stone D S. Journal of Alloys and Compounds,2015,649,649.
19 Meng Fanxing. Study on microstructure and mechanical properties of Mg-Zn-Sm-Zr alloys. Master’s Thesis, Jilin University,China,2016(in Chinese).
孟凡行. Mg-Zn-Sm-Zr合金的组织及力学性能研究.硕士学位论文,吉林大学,2016.
20 Kishida K , Yokobayashi H, Inui H, et al. Intermetallics, 2012,31,55.
21 Yokobayashi H, Kishida K, Inui H, et al.Acta Materialia, 2011,59(19),7287.
22 Jia B R,Liu L B,Yi D Q, et al. Journal of Alloys and Compounds, 2008, 459(1), 267.
23 Hu Xiaoyu,Fu Penghuai ,Stjohn David, et al. Journal of Alloys and Compounds, 2016, 663, 387.
24 Yang Qiang,Bu Fangqiang,Qiu Xin, et al. Journal of Alloys and Compounds, 2016, 665, 240.
25 Zheng Kaiyun.Study on the microstructure and mechanical properties of high strength heat resistant Mg-Gd-Nd-Zr Alloys. Ph.D. Thesis, Shanghai Jiao Tong University, China, 2008(in Chinese).
郑开云. Mg-Gd-Nd-Zr系高强耐热镁合金组织与性能研究.博士学位论文,上海交通大学, 2008.
26 Nie Jianfeng. Metallurgical and Materials Transactions A—Physical Me-tallurgy and Materials Science, 2012, 43(11),3891.
27 Robson J D,Stanford N,Barnett M R. Acta Materialia, 2011, 59(5),1945.
28 LI Ting,Du Zhiwei,Zhang Kui,et al. Materials Review A:Review Papers,2012(11), 96(in Chinese).
李婷,杜志伟,张奎,等. 材料导报:综述篇, 2012(11), 96.
[1] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[2] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[3] 董洁, 袁守谦, 杨双平, 孙永涛, 高海龙, 陈春江. 电脉冲对铸态高韧性球墨铸铁凝固组织及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(20): 44-47.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed