Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6174-6179    https://doi.org/10.11896/cldb.19120088
  高分子与聚合物基复合材料 |
埃洛石纳米管结构改性后用于Pebax基质中强化气体分离
孙延勇1,2, 朱伟芳1,2, 缑敏敏1,2, 郭瑞丽1,2
1 石河子大学化学化工学院,石河子 832003
2 新疆兵团化工绿色过程重点实验室,石河子 832003
Nanoporous Structure Derived from Halloysite Incorporated into Pebax Matrix for Gas Separation
SUN Yanyong1,2, ZHU Weifang1,2, GOU Minmin1,2, GUO Ruili1,2
1 School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
2 Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China
下载:  全 文 ( PDF ) ( 8337KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于埃洛石纳米管(HNTs)内外层结构化学性质不同,使用硫酸(H2SO4)、盐酸(HCl)对埃洛石进行选择性刻蚀,得到了两种纳米多孔埃洛石,即S-HNTs和H-HNTs。将这两种纳米多孔埃洛石引入Pebax MH 1657(Pebax)基质中制备混合基质膜(MMMs)。纯CO2、CH4气体渗透结果表明,在S-HNTs和H-HNTs填充量分别为6%(质量分数)和8%(质量分数)时,Pebax-S-HNTs MMMs和Pebax-H-HNTs MMMs性能达到最优,与纯Pebax膜相比,CO2渗透系数分别增加了97.8%和125.3%,CO2/CH4的理想分离因子分别增加了69.7%和40.0%。气体分离性能的改善主要是由于HNTs的刻蚀扩孔成功以及微/介孔分级多孔结构的存在。这是因为,首先,对HNTs内[AlO6]八面体进行选择性刻蚀导致管腔尺寸增加,提高了气体渗透;其次,微/介孔分级多孔结构的存在为气体扩散提供了多种传递路径,曲折路径的存在促进了气体选择性的提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙延勇
朱伟芳
缑敏敏
郭瑞丽
关键词:  埃洛石(HNTs)  聚醚嵌段聚酰胺共聚物(Pebax)  选择性刻蚀  混合基质膜  二氧化碳分离    
Abstract: Two kinds of modified materials, S-HNTs and H-HNTs, were obtained by selective etching of halloysite with sulfuric acid (H2SO4) and hydrochloric acid (HCl) based on the different chemical properties of the inner and outer structures of halloysite nanotubes (HNTs). And the two different nanoporous structure derived from HNTs were incorporated into Pebax MH 1657 (Pebax) to make mixed matrix membranes (MMMs). The pure CO2 and CH4 gas permeability results showed that, Pebax-S-HNTs MMMs and Pebax-H-HNTs MMMs had the best gas permeation performance when the filling amount was 6wt% and 8wt%, respectively. Compared with pure membrane, the permeability of CO2 in Pebax-S-HNTs MMMs and Pebax-H-HNTs MMMs increased by 97.8% and 125.3% respectively, and the separation factor of CO2/CH4 increased by 69.7% and 40.0% respectively. The improvement of gas separation performance is mainly due to the successful pore expansion of HNTs and the existence of micro/mesoporous graded porous structure. Firstly, the selective etching of HNTs results in the increase of the cavity size of HNTs and which makes the increase of gas permeability; secondly, the existence of multi-layer micro/mesoporous multi-stage pore structure provides a variety of transmission paths for gas diffusion, and the existence of zigzag paths promotes the increase of gas selectivity.
Key words:  halloysite nanotubes (HNTs)    polyether block polyamide (Pebax)    selective-etching    mixed matrix membranes    CO2 separation
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TQ028  
基金资助: 石河子大学“双一流”重点科技项目(SHYL-ZD201804)
通讯作者:  grli@shzu.edu.cn   
作者简介:  孙延勇,石河子大学硕士研究生,主要研究方向是气体膜分离。
郭瑞丽,石河子大学,教授。2007年7月毕业于天津大学,获得工学博士学位,主要从事膜材料、膜分离技术及应用领域的研究。
引用本文:    
孙延勇, 朱伟芳, 缑敏敏, 郭瑞丽. 埃洛石纳米管结构改性后用于Pebax基质中强化气体分离[J]. 材料导报, 2021, 35(6): 6174-6179.
SUN Yanyong, ZHU Weifang, GOU Minmin, GUO Ruili. Nanoporous Structure Derived from Halloysite Incorporated into Pebax Matrix for Gas Separation. Materials Reports, 2021, 35(6): 6174-6179.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120088  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6174
1 Zhang Z, Luo D, Lui G, et al. Carbon,2019,143,531.
2 Huang G, Isfahani A P, Muchtar A, et al. Journal of Membrane Science,2018,565,370.
3 Wang Y, Zhang X, Li J, et al. Journal of Membrane Science,2019,573,602.
4 Hou J, Li X, Guo R, Zhang J, Wang Z. Nanotechnology,2018,29(12),125706.
5 Thankamony R L, Li X, Das S K, et al. Journal of Membrane Science,2019,591,117348
6 Molavi H, Shojaei A, Mousavi S A. Journal of Materials Chemistry A,2018,6(6),2775.
7 Merkel T C, Freeman B D, Spontak R J, et al. Science,2002,296(5567),519.
8 Lee J H, Hong J, Kim J H, et al. Chemical Communications,2012,48(43),5298.
9 Zhao H, Feng L, Ding X, et al. Journal of Membrane Science,2018,564,800.
10 Liu G, Labreche Y, Chernikova V, et al. Journal of Membrane Science,2018,565,186.
11 Thür R, Van Velthoven N, Slootmaekers S, et al. Journal of Membrane Science,2019,576,78.
12 Xin Q, Zhang Y, Huo T, et al. Journal of Membrane Science,2016,508,84.
13 Li T, Pan Y, Peinemann K V, et al. Journal of Membrane Science,2013,425,235.
14 Liu Y, Peng D, He G, et al. ACS Applied Materials & Interfaces,2014,6(15),13051.
15 Yang L, Zhang S, Wu H, et al. Journal of Membrane Science,2019,573,301.
16 Liu M, He R, Yang J, et al. ACS Applied Materials & Interfaces,2016,8(12),7709.
17 Liu M, Jia Z, Jia D, et al. Progress in Polymer Science,2014,39(8),1498.
18 Fares M L, Athmani M, Khelfaoui Y, et al. IOP conference series: mate-rials science and engineering, IOP Publishing,2012,pp.28.
19 Hashemifard S A, Ismail A F, Matsuura T. Journal of Colloid and Interface Science,2011,359(2),359.
20 Abdullayev E, Joshi A, Wei W, et al. ACS Nano,2012,6(8),7216.
21 Shu Z, Chen Y, Zhou J, et al. Applied Clay Science,2015,112,17.
22 Zhu W, Qin Y, Wang Z, et al. Journal of Energy Chemistry,2019,31,1.
23 Wang Z, Hou J, Guo R, et al. Journal of the Chinese Chemical Society,2018,65(11),1347.
24 Kadi S, Lellou S, Marouf-Khelifa K, et al. Microporous and mesoporous materials,2012,158,47.
25 White R D, Bavykin D V, Walsh F C. Nanotechnology,2012,23(6),065705.
26 Joussein E, Petit S, Churchman J, et al. Clay Mineralsed,2005,40,383.
27 Zhang A B, Pan L, Zhang H Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,396,182.
[1] 孙美玲, 黄肖容, 王立栋. Cu-Zn/α-Al2O3中空纤维抗菌膜的制备与性能研究[J]. 材料导报, 2020, 34(6): 6024-6028.
[2] 孙娜,王铎,汪锰. 正渗透膜材料及其制备方法的研究进展[J]. 材料导报, 2019, 33(17): 2966-2975.
[3] 苏慧, 朱兆武, 王丽娜, 齐涛. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报, 2019, 33(13): 2119-2126.
[4] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[5] 鲁云华, 郝继璨, 李琳, 宋晶, 肖国勇, 胡知之, 王同华. 自具微孔聚合物PIM-1基热致刚性膜材料的制备及气体分离性能[J]. 材料导报, 2018, 32(16): 2876-2881.
[6] 李金伟, 黄莉兰, 辛清萍, 叶卉, 赵莉芝, 丁晓莉, 林立刚, 王少飞, 张玉忠. 醇胺改性氧化石墨烯的制备及二氧化硫吸附性能[J]. 《材料导报》期刊社, 2018, 32(8): 1224-1229.
[7] 王辉, 崔梦冰, 闫冬冬, 陈改荣. 添加剂对聚丙烯腈膜结构和性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 555-558.
[8] 王洪杰, 王闻宇, 王赫, 金欣, 李嘉禄, 林童, 朱正涛. 用于油水分离的静电纺纳米纤维膜研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 144-151.
[9] 廖亚龙, 曹磊, 王祎洋, 叶朝. 溶液中镓的提取与分离研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 133-138.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed