Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6180-6188    https://doi.org/10.11896/cldb.19110147
  高分子与聚合物基复合材料 |
基材亲疏水性能对EVOH/LIS复合吸附剂成型结构及提锂性能的影响
陶百福, 王志辉, 郭瑞丽
石河子大学化学化工学院/新疆兵团化工绿色过程重点实验室-省部共建国家重点实验室培育基地,石河子 832003
Effects of Hydrophilic/Hydrophobic Properties of Substrate on Molding Structure and Lithium Extraction Performance of EVOH/LIS Composite Adsorbent
TAO Baifu, WANG Zhihui, GUO Ruili
School of Chemistry and Chemical Engineering/Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
下载:  全 文 ( PDF ) ( 10035KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以锂离子筛H1.6Mn1.6O4(LIS)为吸附剂,乙烯-乙烯醇共聚物(EVOH)为成型基材,制备乙烯-乙烯醇/锂离子筛(LIS)中空纤维膜状复合吸附剂(EVOH/LIS)。改变EVOH中乙烯基的含量调控成型材料的亲疏水性,研究基材亲疏水性对复合吸附剂成型结构、LIS负载量和吸附提锂性能的影响。结果表明,成型材料亲水性越强,复合吸附剂具有越高的孔隙率,LIS分散越均匀。另外,成型材料亲水性对LIS的添加量也具有一定的影响,EVOH-32为成型基材时,LIS的最大添加量为30%(质量分数); EVOH-38和EVOH-44为成型基材时,LIS的最大添加量则为50%(质量分数)。此外,成型材料亲水性显著提高了复合吸附剂对Li+的吸附能力、吸附速率和吸附-解吸循环稳定性,其中EVOH-32/LIS-30在循环吸附五次后,吸附容量仍保持为初始吸附量的95.8%,具有良好的吸附稳定性。以适宜亲水性的EVOH-38为基材制备EVOH-38/LIS-50中空纤维膜状复合吸附剂,其对Li+的吸附量为29.6 mg·g-1(为粉体LIS的93.9%),在锂镁比高于400的模拟卤水中αLi Mg高达559.5,表明该复合吸附剂能够用于高镁锂比卤水中提锂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陶百福
王志辉
郭瑞丽
关键词:  锂离子筛  乙烯-乙烯醇共聚物  中空纤维膜  成型结构  复合吸附剂    
Abstract: The lithium ion sieve H1.6Mn1.6O4 (LIS) was used as the adsorbent and the ethylene-vinyl alcohol copolymer (EVOH) was used as the molding substrate to prepare the ethylene-vinyl alcohol/lithium ion sieve (LIS) hollow fiber membrane composite adsorbent. The content of vinyl in EVOH was changed to control the hydrophilicity of the molding material. The effect of the hydrophilicity of the substrate on the molding structure, LIS loading and lithium extraction performance was studied. The results showed that the stronger the hydrophilicity of the molding material, the higher the porosity of the composite adsorbent and the more uniform dispersion of LIS. On the other hand, the hydrophilicity of molding material also had a certain influence on the addition amount of LIS. The maximum content of LIS in composite adsorbent was 30wt% when EVOH-32 is molding material. However,the maximum content of LIS in composite adsorbent was 50wt% when EVOH-38 and EVOH-44 were molding material. In addition, the hydrophilicity of the molding material significantly improved the Li+ adsorption capacity, adsorption rate and adsorption-desorption cycle stability of composite adsorbent. Among them, the adsorption capacity of EVOH-32/LIS-30 composite adsorbent remained at 95.8% of the initial Li+ adsorption capacity after cyclic adsorption for 5 times, showing good adsorption stability. Finally, the suitable hydrophilic EVOH-38 was selected as molding material to prepare the EVOH-38/LIS-50 hollow fiber membrane composite adsorbent, whose adsorption capacity for Li+ was 29.6 mg·g-1 (93.9% of the adsorption capacity of LIS powder). In the simulated brine with a lithium magnesium ratio higher than 400, the αLi Mg was as high as 559.5, indicating that the composite adsorbent could be used to extract lithium in the brine with a high magnesium lithium ratio.
Key words:  lithium ion sieve    ethylene-vinyl alcohol copolymer    hollow fiber membrane    molding structure    composite adsorbent
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TF826.3  
基金资助: 国家自然科学基金(21868031)
通讯作者:  grli@shzu.edu.cn   
作者简介:  陶百福 2016年9月起在石河子大学化学化工学院化学工程(专业硕士)专业学习,研究方向为分离工程。
郭瑞丽,石河子大学,教授。2007年7月毕业于天津大学,获得工学博士学位,主要从事膜材料、膜分离技术及应用领域的研究。
引用本文:    
陶百福, 王志辉, 郭瑞丽. 基材亲疏水性能对EVOH/LIS复合吸附剂成型结构及提锂性能的影响[J]. 材料导报, 2021, 35(6): 6180-6188.
TAO Baifu, WANG Zhihui, GUO Ruili. Effects of Hydrophilic/Hydrophobic Properties of Substrate on Molding Structure and Lithium Extraction Performance of EVOH/LIS Composite Adsorbent. Materials Reports, 2021, 35(6): 6180-6188.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110147  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6180
1 Swain B. Separation and Purification Technology,2017,172,388.
2 Xu X, Chen Y, Wan P, et al. Progress in Materials Science,2016,84,276.
3 Zhu J Q, Xu B J, Song X W. Metal Mine,2018(8),62(in Chinese).
朱加乾,徐宝金,宋学文,等.金属矿山,2018(8),62.
4 Bai C, Guo M, Zhang H F, et al. Chemical Industry and Engineering Progress,2017,36(3),802(in Chinese).
柏春,郭敏,张慧芳,等.化工进展,2017,36(3),802.
5 Guo M, Feng Z F, Zhou Y, et al. Guangzhou Chemical Industry,2016,44(20),10(in Chinese).
郭敏,封志芳,周园,等.广州化工,2016,44(20),10.
6 Song J F, Nghiem L D, Li X M, et al. Environmental Science: Water Research & Technology,2017,3(4),593.
7 Yang S S, Zhou M L, Wu J Q, et al. Materials Science Forum,2016,852,691.
8 Chitrakar R, Kanoh H, Miyai Y, et al. Chemistry of Materials,2000,12(10),3151.
9 Koilraj P, Smith S M, Yu Q Q, et al. Powder Technology,2016,301,1201.
10 Bertagnolli C, Grishin A, Vincent T, et al. Industrial & Engineering Chemistry Research,2016,55(8),2461.
11 Dwivedi C, Pathak S K, Kumar M, et al. Environmental Science: Water Research & Technology,2015,1(2),153.
12 Song D, Park S J, Kang H W, et al. Journal of Chemical & Engineering Data,2013,58(9),2455.
13 Limjuco L A, Nisola G M, Lawagon C P, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2016,504,267.
14 Nisola G M, Limjuco L A, Vivas E L, et al. Chemical Engineering Journal,2015,280,536.
15 Ma L W, Chen B Z, Chen Y, et al. Microporous and Mesoporous Mate-rials,2011,142(1),147.
16 Park M J, Nisola G M, Vivas E L, et al. Journal of Membrane Science,2016,510,141.
17 Park M J, Nisola G M, Beltran A B, et al. Chemical Engineering Journal,2014,254,73.
18 Chung W J, Torrejos R E C, Park M J,et al. Chemical Engineering Journal,2017,309,49.
19 Chung K, Lee J, Kim, et al. Journal of Membrane Science,2008,325(2),503.
20 Jia Q Y, Wang J, Guo R L. Journal of Porous Materials,2019,26(3),705.
21 Wang J. Preparation of Lithium ion sieve membrane and study of its application preparation in brine. Master's Thesis, Shihezi University, China,2016(in Chinese).
王俊.PAN基锂离子筛膜的制备及在盐湖卤水应用性能研究.硕士论文,石河子大学,2016.
22 Hong H J, Park I S, Ryu T, et al. Chemical Engineering Journal,2013,234,16.
23 Jia, Q Y, Tao B F, Guo R L. Journal of Shihezi University (Natural Science),2018,36(6),712(in Chinese).
贾庆源,陶百福,郭瑞丽.石河子大学学报(自然科学版),2018,36(6),712.
24 Riyasudheen, N, Sujith A. Desalination,2012,294,17.
25 Shang M, Matsuyama H, Teramoto M, et al. Polymer,2003,44(24),7441.
26 Chitrakar R, Kanoh H, Makita Y, et al. Journal of Materials Chemistry,2000,10(10),2325.
27 El-Saftawy A A, Ragheb M S, Zakhary S G. Radiation Physics and Chemistry,2018,147,106.
[1] 罗大军, 秦舒浩, 伍剑明, 李杨, 高进. 聚丙烯/乙烯-乙烯醇共聚物中空纤维及其硬弹性行为[J]. 材料导报, 2020, 34(Z2): 534-538.
[2] 孙美玲, 黄肖容, 王立栋. Cu-Zn/α-Al2O3中空纤维抗菌膜的制备与性能研究[J]. 材料导报, 2020, 34(6): 6024-6028.
[3] 牛润萍, 庚立志, 范莹莹. 分离膜在膜液体除湿中的应用进展[J]. 材料导报, 2020, 34(15): 15069-15074.
[4] 张理元, 由耀辉, 刘义武, 阮尚全. 无机沉淀胶溶法制备钛锂离子筛及其吸附性能研究[J]. 材料导报, 2019, 33(24): 4056-4061.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed