Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6189-6193    https://doi.org/10.11896/cldb.20020011
  高分子与聚合物基复合材料 |
纳米碳管/石墨烯导电硅脂的性能
吴礼宁1, 夏延秋1, 吴浩1, 陈中山1, 曹亚楠1,2, 侯冲3
1 华北电力大学能源动力与机械工程学院,北京 102206
2 内蒙古科技大学机械工程学院,包头 014010
3 国网北京市电力公司房山供电公司,北京 102400
Properties of Carbon Nanotubes/Graphene Conductive Silicone Grease
WU Lining1, XIA Yanqiu1, WU Hao1, CHEN Zhongshan1, CAO Ya'nan1,2, HOU Chong3
1 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
2 School of Mechanical Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
3 State Grid Beijing Fangshan Electeic Power Company, Beijing 102400, China
下载:  全 文 ( PDF ) ( 6202KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 分别以不同含量的纳米碳管和石墨烯为添加剂,二甲基硅油为基础油,聚四氟乙烯作稠化剂,制备了导电润滑硅脂。分别采用SYP4110-I润滑脂宽温度范围滴点测试仪、GEST-121体积电阻测定仪和MFT-R4000往复摩擦磨损试验机对硅脂的滴点、体积电阻率和摩擦学性能进行测试,采用扫描电子显微镜观察钢盘磨斑表面形貌,XPS能谱仪分析磨损表面元素组成。结果表明,两种添加剂都可以提高硅脂的滴点、导电性和摩擦学性能;且在添加量相同时,纳米碳管对硅脂滴点、导电性和摩擦学性能的改善优于石墨烯,当纳米碳管和石墨烯含量为0.2%时,制备的导电硅脂均具有更优异的抗磨减摩性能。XPS分析表明,在金属表面生成的摩擦保护膜是提高摩擦副抗磨减摩性能的根本原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴礼宁
夏延秋
吴浩
陈中山
曹亚楠
侯冲
关键词:  纳米碳管  石墨烯  硅油  体积电阻率  摩擦磨损    
Abstract: Conductive silicon grease was prepared by using polytetrafluoroethylene as thickening agent, polydimethylsiloxane as base oil,different contents of carbon nanotubes and graphene as additive. The dropping point, volume resistivity and tribological behaviors of silicone grease were evaluated by using a SYP4110-I grease wide temperature range dropping point tester, a GEST-121 volume surface resistance tester and a MFT-R4000 reciprocating friction and wear tester, respectively. The results show that both additives can improve the dropping point, conductivity and tribological behaviors of the silicone grease. When the mass fraction addition of the additive is 0.2%, more excellent anti-wear and anti-friction effects can be obtained. XPS analysis results show that the friction protection film which formed on the metal surface is the fundermental reason for raising the anti-wear and anti-friction ability of the friction pair.
Key words:  carbon nanotubes    graphene    silicone oil    volume resistivity    friction and wear
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TH117  
基金资助: 中央高校基本业务经费资助项目(2019QN039)
通讯作者:  xiayq@ncepu.edu.cn   
作者简介:  吴礼宁,2013年4月毕业于华北电力大学,获得工学硕士学位。于2017年9月在华北电力大学攻读工学博士学位,主要研究方向为:动力机械及工程、状态监测和故障诊断、表面工程技术、导电润滑脂的制备和特性研究。
夏延秋,华北电力大学能源与机械工程学院教授、博士研究生导师。主要研究方向为:润滑油及其添加剂的摩擦化学研究、机械设备的润滑原理和润滑技术研究、功能化材料的制备和摩擦润滑研究、设备的润滑与监测。
引用本文:    
吴礼宁, 夏延秋, 吴浩, 陈中山, 曹亚楠, 侯冲. 纳米碳管/石墨烯导电硅脂的性能[J]. 材料导报, 2021, 35(6): 6189-6193.
WU Lining, XIA Yanqiu, WU Hao, CHEN Zhongshan, CAO Ya'nan, HOU Chong. Properties of Carbon Nanotubes/Graphene Conductive Silicone Grease. Materials Reports, 2021, 35(6): 6189-6193.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20020011  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6189
1 Ge X Y, Xia Y Q, Feng X, et al. Journal of Mechanical Engineering,2015,51(15),61(in Chinese).
葛翔宇,夏延秋,冯欣,等.机械工程学报,2015,51(15),61.
2 Feng X. Tribology,2011,31(3),205(in Chinese).
冯欣.摩擦学学报,2011,31(3),205.
3 Feng X. Acta Petrolei Sinica (Petroleum Processing Section),2011,27(6),989(in Chinese).
冯欣.石油学报(石油加工),2011,27(6),989.
4 Zhang G L, Ke Y C, Yang L Y, et al. T Acta Petrolei Sinica (Petroleum Processing Section),2014,30(2),283(in Chinese).
张国亮,柯扬船,杨丽燕,等.石油学报(石油加工),2014,30(2),283.
5 Liu C, Xia Y Q, Cao Z F. Tribology,2015,35(4),393(in Chinese).
刘椿,夏延秋,曹正锋.摩擦学学报,2015,35(4),393.
6 Ge X Y, Xia Y Q, Shu Z Y, et al. Friction,2015,3(1),56.
7 Fan X Y, Xia Y Q, Wang L P. Friction,2014,2(4),343.
8 Li M X, Deng X Q, Guo P K, et al. Lubrication Engineering,2019,44(4),120(in Chinese).
厉敏宪,邓先钦,郭培康,等.润滑与密封,2019,44(4),120.
9 Agrawal N, Parihar A S, Singh J P, et al. Procedia Materials Science,2015,10,139.
10 Berman D, Erdemir A, Sumant A V. Carbon,2013,54,454.
11 Shi Z, Shum P W, Wasy A, et al. Surface & Coatings Technology,2016,296,164.
12 Diana B, Erdemir A, Sumant A V, et al. Carbon,2013,59(8),167.
13 Qiao Y L, Cui Q S, Zang Y, et al. Journal of Academy of Armored Force Engineering,2014,28(6),97(in Chinese).
乔玉林,崔庆生,臧艳,等.装甲兵工程学院学报,2014,28(6),97.
14 Wu Le H, Wu Q S, Xu W, et al. Journal of Materials Science and Engineering,2014,32(5),678(in Chinese).
吴乐华,吴其胜,许文,等.材料科学与工程学报,2014,32(5),678.
15 Gou Y J, Liu Z L, Zhang G M, et al. Journal of Engineering Thermophy-sics,2014,35(6),1185(in Chinese).
勾昱君,刘中良,张广孟,等.工程热物理学报,2014,35(6),1185.
16 Fan X Q, Wang L P. Journal of Colloid and Interface Science,2015,452,98.
17 Meng Y, Su F H, Chen Y Z. ACS Applied Materials & Interfaces,2017,9(45),39549.
18 Pu J B, Wang L P, Xue Q J. Tribology,2014,34(1),93(in Chinese).
蒲吉斌,王立平,薛群基.摩擦学学报,2014,34(1),93.
[1] 张勇, 郝永刚. 石墨烯及氧化石墨烯在纺织领域的应用[J]. 材料导报, 2021, 35(Z1): 78-82.
[2] 黄绪德, 刘欣. 利用维生素C和茶多酚还原氧化石墨烯及其表征[J]. 材料导报, 2021, 35(Z1): 83-86.
[3] 胡学飞. 低熔点玻璃粉对水冷壁涂层组织和性能的影响[J]. 材料导报, 2021, 35(Z1): 189-194.
[4] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[5] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[6] 刘家森, 陈秀华, 李绍元, 马文会, 李毅, 胡焕然, 马壮. 石墨烯/硅肖特基结太阳能电池的研究进展[J]. 材料导报, 2021, 35(9): 9115-9122.
[7] 孙晓玲, 弓巧娟, 梁云霞, 巩鹏妮. 新型薄层氮化碳/氧化石墨烯复合材料的制备及在锌-空气电池中的应用[J]. 材料导报, 2021, 35(8): 8001-8006.
[8] 陈瑞芳, 曲雯雯, 王一钧, 马保挎, 陈尚民. 溶剂对钨酸铋/石墨烯形貌结构和光催化性能的影响[J]. 材料导报, 2021, 35(6): 6008-6014.
[9] 索鑫磊, 刘艳, 张立来, 苏杭, 李婉, 李国龙. 基于氧化石墨烯空穴传输层的平面异质结钙钛矿太阳能电池[J]. 材料导报, 2021, 35(6): 6015-6019.
[10] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
[11] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[12] 魏致强, 王远贵, 齐孟, 郑旭煦, 袁小亚. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10): 10042-10047.
[13] 张宇慧, 李大燕, 袁晨风, 金国, 房永超, 张丹. 金属Ni修饰的石墨烯及其对等离子喷涂NiCoCrAlY涂层力学性能的影响[J]. 材料导报, 2021, 35(10): 10141-10146.
[14] 林绍铃, 黄初, 赵小敏, 陈国华. 石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J]. 材料导报, 2021, 35(10): 10184-10188.
[15] 曹明艳, 俞爱斌, 吴玉萍, 乔磊, 程杰. 氧化石墨烯/聚酯树脂涂层的制备及耐腐蚀性能[J]. 材料导报, 2021, 35(10): 10227-10231.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[8] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[9] YAN Haikuo, ZHENG Xiaoping, WANG Fan, BAO Jinbiao, WANG Shiwei. Adjusting Phase Morphology and Mechanical Properties of the Polymer Binary Blends by Supercritical CO2[J]. Materials Reports, 2018, 32(12): 2057 -2061 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed