Please wait a minute...
材料导报  2021, Vol. 35 Issue (6): 6194-6199    https://doi.org/10.11896/cldb.19120228
  高分子与聚合物基复合材料 |
热拉伸对尼龙6薄膜微观结构与力学性能的影响
刘轶, 刘跃军, 李祥刚, 崔玲娜, 刘小超, 李樟华, 范淑红
湖南工业大学先进包装材料与技术湖南省重点实验室,株洲 412007
Effect of Hot Stretching on Microstructure and Mechanical Properties of Nylon 6 Films
LIU Yi, LIU Yuejun, LI Xianggang, CUI Lingna, LIU Xiaochao, LI Zhanghua, FAN Shuhong
Hunan Provincial Key Laboratory of Advanced Packaging Materials and Technology of Hunan University of Technology, Zhuzhou 412007,China
下载:  全 文 ( PDF ) ( 5838KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了尼龙6(PA6)薄膜的热拉伸工艺对其微观结构和力学性能的影响规律。在玻璃化转变温度(Tg)到熔点(Tm)之间的加工温度范围内对PA6薄膜进行了不同程度的单向热拉伸,并对其微观结构与力学性能进行表征测试。结果表明:随着拉伸温度和拉伸比的提高,PA6中的β晶型向α晶型的转变程度增大,促进了PA6中分子链沿拉伸方向的结晶和取向,从而显著提高了PA6的结晶度,并发现其无定形区减少,玻璃化转变温度(Tg)提高。拉伸温度的提高有利于PA6中α(002)晶面的生长,高温下拉伸形成的α晶体更完整;随着拉伸比的提高,形成的α晶体完整程度先升高后降低。热拉伸后的PA6薄膜的拉伸强度和储能模量增加,断裂伸长率降低;与未拉伸的PA6薄膜相比,拉伸温度为160 ℃、拉伸比为3的PA6薄膜拉伸强度增加371%,断裂伸长率降低235%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘轶
刘跃军
李祥刚
崔玲娜
刘小超
李樟华
范淑红
关键词:  尼龙6  薄膜  热拉伸    
Abstract: The effect of the hot stretching process on the microstructure and mechanical properties of nylon 6 (PA6) films was studied. The PA6 films were treated by uniaxial hot stretching in the temperature range of glass transition temperature (Tg) and melting point (Tm), and microstructure and mechanical properties of the films were characterized. The results show that with the increasing of the tensile temperature and the tensile ratio, the degree of transformation from β crystal form to α crystal form in PA6 was increasing, which promotes the crystallization and orientation of the molecular chain in PA6 along the stretched direction, thus significantly improved the crystallization degree of PA6. Moreover, it is found that the amorphous region decreased and the glass transition temperature (Tg) increased. The increase of tensile temperature is beneficial to the growth of α crystal plane in PA6, and the more complete α crystal is formed at high temperatures. With the increase of the tensile ratio, the integrity degree of α crystal increased at first and then decreased. After hot stretching, the tensile strength and storage modulus of PA6 films increased, yet the elongation at break decreased. Compared with unstretched PA6 films, the tensile strength of PA6 films at the tensile temperature of 160 ℃ and the tensile ratio of 3 was increased by 371%, and the elongation at break decreased by 235%.
Key words:  nylon 6    films    hot stretching
               出版日期:  2021-03-25      发布日期:  2021-03-23
ZTFLH:  TQ316  
基金资助: 国家自然科学基金(11872179);湖南省自然科学基金(2018JJ4072);湖南省高校创新平台开放基金(18K079);湖南省教育厅科学研究项目(18B288;19A138)
通讯作者:  yjliu_2005@126.com;lixiangfm@163.com   
作者简介:  刘轶,2020年6月毕业于湖南工业大学,获得工程硕士学位,主要从事尼龙薄膜的拉伸与流变性能研究。
刘跃军,博士,教授,博士研究生导师,湖南工业大学包装与材料工程学院。主要从事高分子成型加工、高分子流变学、包装新材料与技术等领域的科研工作。
李祥刚,博士,讲师,湖南工业大学高分子材料与工程系。主要从事高分子流变学、高分子材料、高分子加工等领域的科研工作。
引用本文:    
刘轶, 刘跃军, 李祥刚, 崔玲娜, 刘小超, 李樟华, 范淑红. 热拉伸对尼龙6薄膜微观结构与力学性能的影响[J]. 材料导报, 2021, 35(6): 6194-6199.
LIU Yi, LIU Yuejun, LI Xianggang, CUI Lingna, LIU Xiaochao, LI Zhanghua, FAN Shuhong. Effect of Hot Stretching on Microstructure and Mechanical Properties of Nylon 6 Films. Materials Reports, 2021, 35(6): 6194-6199.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120228  或          http://www.mater-rep.com/CN/Y2021/V35/I6/6194
1 Li Y, Goddard W A. Macromolecules,2002,35(22),8440.
2 Jarrar R, Mohsin M A, Haik Y. Journal of Applied Polymer Science,2012,124(3),1880.
3 Santamaría P, Eguiazabal J I. Polymers for Advanced Technologies,2013,24(3),300.
4 Parodi E, Peters G W M, Govaert L E. Polymers,2018,10(7),710.
5 Kotek R, Jung D, Tonelli A E, et al. Journal of Macromolecular Science Part C,2005,45(3),201.
6 Barth T. 11-Biaxially stretched polyamide film, Woodhead Publishing Limited, Germany,2011.
7 Seif S, Cakmak M. Polymer,2010,51(16),3762.
8 Yalcin B, Valladares D, Cakmak M. Polymer,2003,44(22),6913.
9 Murthy N S, Bray R G, Correale S T, et al. Polymer,1995,36(20),3863.
10 Atkins E D T, Hill M, Hong S K, et al. Macromolecules,1992,25(2),917.
11 Kinoshita Y. Macromolecular Chemistry and Physics,1959,33(1),1.
12 Wang Z, Ma Z, Li L. Macromolecules,2016,49(5),1505.
13 Fornes T D, Paul D R. Polymer,2003,44(14),3945.
14 Miri V, Elkoun S, Peurton F, et al. Macromolecules,2008,41(23),9234.
15 Stepaniak R F, Garton A, Carlsson D J, et al. Journal of Polymer Science Polymer Physics Edition,1979,17(6),987.
16 Pralay M, Masami O. Macromolecular Materials & Engineering,2003,288(5),440.
17 Arimoto H, Ishibashi M, Hirai M, et al. Journal of Polymer Science Part A: General Papers,1965,3(1),317.
18 Cavallo D, Gardella L, Alfonso G C, et al. Colloid and Polymer Science,2011,289(9),1073.
19 Mileva D, Androsch R, Zhuravlev E, et al. Polymer,2012,53(18),3994.
20 Ziabicki A. Colloid and Polymer Science,1959,167(2),132.
21 Holmes D R, Bunn C W, Smith D J. Journal of Polymer Science,1955,17(84),159.
22 Androsch R, Stolp M, Radusch H J. Acta Polymerica,1996,47(2-3),99.
23 Penel-Pierron L, Depecker C, Séguéla R, et al. Journal of Polymer Science Part B: Polymer Physics,2001,39(5),484.
24 Xu J R, Ren X K, Yang T, et al. Macromolecules,2017,51(1),137.
25 Hoashi K, Andrews R D. Journal of Polymer Science Polymer Symposia,1972,38(1),387.
26 Penel-Pierron L, Séguéla R, Lefebvre J M, et al. Journal of Polymer Science Part B Polymer Physics,2001,39(11),1224.
27 Ito M, Mizuochi K, Kanamoto T. Polymer,1998,39(19),4593.
28 Ziabicki A, Kedzierska K. Journal of Applied Polymer Science,1959,2(4),14.
29 Franco L, Cooper S J, Atkins E D T, et al. Journal of Polymer Science, Part B (Polymer Physics),1998,36(7),1153.
30 Bell J P, Murayama T. Journal of Polymer Science Part B Polymer Phy-sics,1969,7(6),1059.
31 Bessell T J, Hull D, Shortall J B. Journal of Materials Science,1975,10(7),1127.
32 Wang S Q. Nonlinear polymer rheology, Wiley, USA,2018.
33 Kohlrausch R. Annalen Der Physik,1854,167(2),179.
34 Williams G, Watts D C. Transactions of the Faraday Society,1970,66,80.
35 Murthy N, Minor H, Latif R. Journal of Macromolecular Science, Part B: Physics,1987,26(4),427.
36 Pepin J, Miri V, Lefebvre J M. Macromolecules,2016,49(2),5643.
37 Wunderlich B. Macromolecular Physics, Academic Press, USA,1980.
38 Jones N A, Atkins E D T, Hill M J, et al. Polymer,1997,38(11),2689.
39 Ferreiro V, Depecker C, Laureyns J, et al. Polymer,2004,45(17),6013.
40 Gurato G, Fichera A, Grandi F Z, et al. Macromolecular Chemistry & Physics,1974,175(3),953.
41 Ishak Z A M, Berry J P. Journal of Applied Polymer Science,1994,51(13),2145.
42 Ding H Q, Xiao L Q, Zhou W L, et al. Applied Mechanics and Materials,2013,376,125.
43 Howard W S, Moore G E, Hansen J E, et al. Journal of Polymer Science,1956,21(98),189.
[1] 明帅强, 文庆涛, 高雅增, 闫美菊, 卢维尔, 夏洋. 基于原子层沉积技术制备氧化钽薄膜及其特性研究[J]. 材料导报, 2021, 35(6): 6042-6047.
[2] 常洪雷, 曲明月, 刘伟, 陈繁育, 周鹏飞, 程梦莹, 刘健. 基于聚乙烯醇制备的自修复胶囊的性能评估[J]. 材料导报, 2021, 35(6): 6212-6218.
[3] 于翔, 桂久青, 宋子豪, 张雪寅, 董献辉, 李玥, 张雅琪. 亲水性PVDF/TiO2复合薄膜的制备及光催化性能[J]. 材料导报, 2021, 35(4): 4023-4027.
[4] 段鹏, 彭燕, 王希玮, 韩晓桐, 王笃福, 胡小波, 徐现刚. 用于MPCVD金刚石薄膜生长的高表面质量HTHP金刚石的制备[J]. 材料导报, 2021, 35(4): 4034-4037.
[5] 邱宇, 朱俊, 周云霞, 李康, 张钰. Al掺杂浓度对Hf0.5Zr0.5O2薄膜铁电性能的影响[J]. 材料导报, 2021, 35(2): 2001-2005.
[6] 杨志春, 吴狄, 剡晓波, 蒋昭毅, 刘宗豪, 陈炜. 大面积钙钛矿薄膜制备技术的研究进展[J]. 材料导报, 2021, 35(1): 1046-1057.
[7] 秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
[8] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[9] 金克霞, 江泽慧, 马建锋, 傅峰, 杨淑敏, 刘杏娥. 纤维素纳米晶基导电复合材料的应用进展[J]. 材料导报, 2020, 34(Z2): 521-524.
[10] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[11] 陈营, 魏燕红, 陈德平, 慕东. 中温成型含硅可溶性聚酰亚胺薄膜及其性能研究[J]. 材料导报, 2020, 34(Z1): 572-575.
[12] 阎森飚, 徐键. CZTS薄膜太阳能电池无镉缓冲层材料的研究进展[J]. 材料导报, 2020, 34(7): 7045-7052.
[13] 彭增伟, 刘保亭. 外延掺锰铁酸铋薄膜电容器的光电导和光伏效应[J]. 材料导报, 2020, 34(6): 6010-6014.
[14] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[15] 何延如, 田小让, 赵冠超, 代玲玲, 聂革, 刘敏胜. 石墨烯薄膜的制备方法及应用研究进展[J]. 材料导报, 2020, 34(5): 5048-5060.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed