Please wait a minute...
材料导报  2019, Vol. 33 Issue (13): 2119-2126    https://doi.org/10.11896/cldb.18050025
  材料与可持续发展(二)-材料绿色制造与加工* |
从盐湖卤水中提取与回收锂的技术进展及展望
苏慧1,2,3,朱兆武1,2,王丽娜1,2,齐涛1,2
1 中国科学院过程工程研究所,湿法冶金清洁生产技术国家工程实验室,北京 100190
2 中国科学院绿色过程与工程重点实验室,北京 100190
3 中国科学院大学化工学院,北京 101408
Advances and Prospects of Extracting and Recovering Lithium From Salt Lake Brines
SU Hui1,2,3, ZHU Zhaowu1,2, WANG Lina1,2, QI Tao1,2
1 Institute of Process Engineering Chinese Academy of Science, Hydrometallurgy Clean Production Technology National Engineering Laboratory, Beijing 100190
2 Key Laboratory of Green Process and Engineering, Chinese Academy of Science, Beijing 100190
3 School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 101408
下载:  全 文 ( PDF ) ( 2630KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来随着便携式电子设备和电动汽车的迅速发展,锂在新型能源材料领域中的应用日益显现,其开发与利用也受到了高度的关注。锂主要存在于矿石和盐湖卤水资源中,其中盐湖卤水中的锂储量高达70%以上。盐湖卤水提锂工艺简单,能耗低,省去了矿石加工分解的复杂过程,避免了大量酸性或碱性固体废渣的产生,环境友好。因此与矿石提锂工艺相比,盐湖卤水提锂工艺具有明显的技术及经济优势,是世界锂产品生产的主要途径。
然而,盐湖卤水中除锂外还含有大量的钠、钾、硼、镁等元素,因此在提锂过程中需要对杂质离子加以分离净化,其中镁锂的分离最为困难。国外的盐湖卤水大多镁锂比(质量比)低(Mg/Li<20,w/w),一般采用盐田浓缩-转化法提取锂,工艺简单、成本低。而我国除了新疆扎布耶盐湖为世界唯一的低镁锂比碳酸盐型盐湖外,其他均为高镁锂比盐湖(Mg/Li>20),传统的蒸发-转化工艺失去效果,因此开发适应于高镁锂比盐湖卤水的提锂技术成为当前研究的热点。
针对高镁锂比盐湖卤水研究开发了许多新工艺,如煅烧浸取法、溶剂萃取法、膜分离法、离子交换与吸附法等。其中煅烧浸取法可实现卤水中多资源的综合利用,但水蒸发量大,能耗高,产生的HCl对设备腐蚀性大,而且污染严重。溶剂萃取法操作连续、处理量大、固定投资小、运行成本低,但高酸反萃以及溶剂的损失制约了该方法的大规模应用,急需开发新的萃取体系解决这些问题。膜分离法步骤简单、试剂耗量低、清洁无污染,但膜成本较高,膜中毒以及使用寿命短的问题有待解决,而且该方法耗水量大。离子交换与吸附法选择性好、收率高,其中铝基吸附剂实现了规模化工业生产,但吸附法必须与其他方法结合进行锂的生产。分析表明,溶剂萃取法和膜分离法在解决高镁锂比盐湖卤水提锂方面更具有发展前景,而对于锂浓度较低的盐湖卤水,使用铝基吸附剂具有明显的优势。
本文在分析盐湖卤水资源特点的基础上,评述了蒸发浓缩沉淀法、煅烧浸取法、溶剂萃取法、膜分离法以及吸附法与离子交换法等关键提锂技术的研究现状及特点,重点阐述了高镁锂比盐湖卤水提锂方法的理论及特点,并综述了提锂工艺中杂质离子的走向和分离步骤,探讨了清洁、高效锂产品生产过程的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏慧
朱兆武
王丽娜
齐涛
关键词:  盐湖卤水  锂提取  高镁锂比  沉淀  萃取    吸附    
Abstract: In recent years, with the rapid development of portable electronic devices and electric vehicles, lithium has been increasingly used in the field of new energy materials. Its exploitation and utilization have caused much attention. Lithium mainly deposits in the hard-rock ores and salt lake brines, and among them, lithium reserves in salt lake brines account for more than 70%. The process of lithium recovery from salt lake brines is simple with low energy consumption compared with that from hard-rock ores since it avoids the complex process of ore treatment and conversion to transfer lithium from solid compounds into a solution. The process does not generate large amounts of acidic or alkaline solid wastes, so that it is clean and environmentally friendly. Lithium recovery from brines has become the main way to produce lithium in the world because it has obvious technical and economic advantages.
In salt lake brines, large amounts of elements such as Na, K, B, Mg present together with Li. Therefore, complicated process is needed to separate and remove impurity ions for the lithium purification and production. It is particularly difficult in the separation of Li from large amount of Mg. As most salt lake brines outside China have low Mg content with a low Mg/Li ratio (Mg/Li(w/w)<20), traditional method of solar evaporation coupled with precipitation could be used for the lithium recovery. The process is simple with low cost. However, almost all salt lake brines have high Mg content with Mg/Li ratio higher than 20 in China, except Zabuye Salt Lake in Tibet area, which is one of carbonate type of brines with very low Mg/Li ratio. As aforementioned traditional method is not suitable for high Mg content brines due to the high reagent consumption, the development of new economical method is highly demanded and it has become a hot research topic. This is particularly true in China.
At present, although a number of processes have been developed and commercially applied in China for the lithium recovery from salt lake brines with high Mg/Li ratios, such as calcination-selective leaching based method, solvent extraction based method, membrane separation based method and adsorption based method. Among them, the method based on calcination followed by selective leaching can achieve comprehensive utilization of various resources in the brine. However, it has serious disadvantages including large amount of water evaporation, high energy consumption, serious equipment corrosion and air pollution by HCl production. Although solvent extraction based method has its obvious advantages, such as continuous operation, high throughput capacity, low capital and operating cost, lithium stripping with strong acidic solution limits its wide applications. In addition, solvent loss by phase entrainment, crud formation etc., also hinders its application. The new advanced extraction system which can solve these problems is urgently needed for this method. Membrane separation based method is another commercially used method with the advantages including simple process, low reagent consumption, clean production without environmental impact. It also has its significant drawbacks such as high capital and operating cost, membrane poisoning and short service life. The alumina-based adsorbent have good selectivity for lithium over other impurities and it has been commercially applied for lithium recovery from high Mg content brines in a large scale in China. However, the adsorption method must be followed by other methods for lithium production. In overview, it is indicated that the methods based on solvent extraction and membrane separation are more prospective for the lithium recovery from salt lake brines containing high Mg concentration, and alumina-based adsorption method is more suitable for the case of low lithium content brines.
Based on the analysis of the properties of brine resources, this paper summarizes the research status and features of typical methods mentioned above for lithium recovery from brines. The advantages and disadvantages of all mentioned methods have been discussed in detail. The review is especially focused on the recovery of lithium from salt lake brines with high Mg/Li ratios. The direction and separation of impurities in the process of lithium extraction was also discussed. In addition, the development trend of clean and efficient production of lithium from salt lake brines was predicted.
Key words:  salt lake brines    lithium extraction    high Mg/Li ratio    precipitation    extraction    membranes    adsorption
               出版日期:  2019-07-10      发布日期:  2019-06-14
ZTFLH:  TQ028  
基金资助: 中国科学院前沿科学重点研究项目(QYZDJ-SSW-JSC021);中国科学院创新交叉团队项目;国家自然科学基金项目(51774260;21506233;21606241);中国科学院过程工程研究所人才计划
作者简介:  苏慧,2016年6月毕业于中国矿业大学(北京),获得工学学士学位。现为中国科学院大学化工学院、中国科学院过程工程研究所博士研究生,在齐涛研究员及朱兆武研究员的指导下进行研究。目前主要研究方向为盐湖卤水萃取提锂新技术及基础研究。
齐涛,研究员,现任中科院重大科技任务局副局长,曾任中科院过程工程所副所长。国家杰出青年科学基金获得者,“新世纪百千万人才工程”国家级人选,中国科学院“百人计划”,湿法冶金清洁生产技术国家工程实验室主任,863主题项目首席科学家。现任中国有色金属学会常务理事,及《过程工程学报》和《计算机与应用化学》编委,兼钒钛资源综合利用产业技术创新战略联盟副理事长。从事两性金属资源清洁生产技术的基础与应用研究,以及资源高效-清洁-循环利用清洁冶金过程平台技术的建设。发表论著1部,学术论文200余篇,其中SCI收录119篇。申请发明专利80余项,其中授权的国际发明专利1项、中国发明专利39项。荣获2005年国家技术发明二等奖(第三名)。
引用本文:    
苏慧, 朱兆武, 王丽娜, 齐涛. 从盐湖卤水中提取与回收锂的技术进展及展望[J]. 材料导报, 2019, 33(13): 2119-2126.
SU Hui, ZHU Zhaowu, WANG Lina, QI Tao. Advances and Prospects of Extracting and Recovering Lithium From Salt Lake Brines. Materials Reports, 2019, 33(13): 2119-2126.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050025  或          http://www.mater-rep.com/CN/Y2019/V33/I13/2119
1 Li F F, Li Z. Jiangxi Chemical Industry, 2016(6), 11 (in Chinese).李芳芳, 李忠.江西化工, 2016(6), 11.2 Wang Q G, Sha Z J, Hu J F, et al. Journal of Salt Lake Research, 2017, 25(3), 74 (in Chinese).王求贵, 沙占江, 胡菊芳, 等.盐湖研究, 2017, 25(3), 74.3 Qi G C,Hai C X,Zhou Y. Journal of Functional Materials, 2018, 49(11), 11023 (in Chinese).漆贵财,海春喜,周园. 功能材料, 2018, 49(11), 11023.4 Choubey P K, Kim M S, Srivastava R R, et al. Minerals Engineering, 2016, 89, 119.5 Meshram P, Pandey B D, Mankhand T R. Hydrometallurgy, 2014, 150, 192.6 Swain B. Separation & Purification Technology, 2016, 172, 388.7 Liu D F, Sun S Y, Yu J G. CIESC Journal, 2018, 69(1), 141 (in Chinese).刘东帆, 孙淑英, 于建国. 化工学报, 2018, 69(1), 141.8 Zhao X, Zhang Q, Wu H H, et al. Progress in Chemistry, 2017, 29(7), 796 (in Chinese).赵旭, 张琦, 武海虹, 等.化学进展, 2017, 29(7), 796.9 Li M L, Duo J, Qiu Y Q, et al. China Measurement & Test, 2014, 40(4), 51 (in Chinese).李明礼, 多吉, 邱衍卿, 等.中国测试, 2014, 40(4), 51.10 An J W, Kang D J, Tran K T, et al. Hydrometallurgy, 2012, 117, 64.11 Gao F, Zheng M P, Nie Z, et al. Journal of Earth, 2011, 32(4), 483.12 Zhang B Q. Journal of Salt and Chemical Industry, 2000, 29(4), 9 (in Chinese).张宝全.盐业与化工, 2000, 29(4), 9.13 Peng J Y. Research on penomenon, mechanism, dynamics of borates crystallization by diluting boron-containing brine of sulfate-type saline lakes with water. Ph.D. Thesis. University of Chinese Academy of Sciences (Qinghai Institute of Salt Lakes), China, 2016 (in Chinese).彭姣玉.硫酸盐型富硼卤水稀释成盐——现象、机理及动力学. 博士学位论文, 中国科学院研究生院(青海盐湖研究所), 2016.14 Yuan R Q, Cheng Q F.Journal of Salt lake Research, 2008, 16(1), 67 (in Chinese).袁瑞强, 程芳琴.盐湖研究, 2008, 16(1), 67.15 Zhao Y Y, Zheng M P, Bu L Z, et al.Sea-Lake Salt & Chemical Industry, 2005, 34(2),1 (in Chinese).赵元艺, 郑绵平,卜令忠, 等. 盐科学与化工, 2005, 34(2),1.16 Huang W N, Sun Z N, Wang X K,et al. Modern Chemical Industry, 2008, 28(2), 14 (in Chinese).黄维农, 孙之南,王学魁, 等. 现代化工, 2008, 28(2), 14.17 He J, Yang L X, Wang Y, et al.Acta Geologica Sinica, 2014, 88(S1),333.18 Cui X Q, Cheng F Q, Zhang A H, et al. Inorganic Chemicals Industry, 2012, 44(7), 33 (in Chinese).崔小琴, 程芳琴, 张爱华, 等.无机盐工业, 2012, 44(7), 33.19 Pang S S, Liang Q, Liu K, et al. Sichuan Building Materials, 2016, 23(3), 12 (in Chinese).庞莎莎, 梁渠, 刘凯, 等.四川建材, 2016, 23(3), 12.20 Zhang R G, Yang S L, Guo L P, et al.Inorganic Chemicals Industry, 2005, 37(3), 1 (in Chinese).张荣国, 杨顺林, 郭丽萍, 等.无机盐工业, 2005, 37(3), 1.21 Liu Y H, Deng T L.World Sci-Tech R & D, 2006(5), 69 (in Chinese).刘元会, 邓天龙.世界科技研究与发展, 2006(5), 69.22 钟辉,许惠. 中国专利, 03117501.5, 2003.23 钟辉,杨建元,张芃. 中国专利, 01128815.9, 2002.24 Huang H. The technology research on magnesium-lithium separation of the acidified brine in west taijnar salt lake of Qinghai. Master's Thesis, Chengdu University of Technology, China, 2009 (in Chinese).黄浩. 青海西台吉乃尔盐湖酸化老卤镁锂分离的技术研究. 硕士学位论文, 成都理工大学, 2009.25 杨建元, 夏康明. 中国专利, 200510085832.9, 2006.26 Zheng M P, Zhang Y S, Liu X F, et al.Acta Geologica Sinica, 2016, 90(9), 2123 (in Chinese).郑绵平, 张永生, 刘喜方,等.地质学报, 2016, 90(9), 2123.27 Nelli J R, Arthur T E. U.S. patent, US3537813, 1970.28 Tong Z D, Li F J, Huang S Q, et al.Rare Metals, 1987(1), 66 (in Chinese).童兆达, 李发金, 黄师强, 等.稀有金属, 1987(1), 66.29 Li F Q.World Nonferrous Metals, 2015(5), 17 (in Chinese).李法强.世界有色金属, 2015(5), 17.30 Xiang W, Liang S, Zhou Z, et al.Hydrometallurgy, 2017, 171, 27.31 Zhou Z, Wei Q, Liang S, et al.Industrial & Engineering Chemistry Research, 2012, 51(39), 12926.32 Zhou Z, Liang S, Qin W, et al.Industrial & Engineering Chemistry Research, 2013, 52(23), 7912.33 Zhou Z, Wei Q, Fei W.Journal of Chemical & Engineering Data, 2011, 56(9), 3518.34 姬连敏, 李丽娟, 李晋峰, 等. 中国专利, 201410693207.1, 2015.35 Shi D, Li J F, Zhang B, et al.Journal of Salt Lake Research, 2013, 21(2), 52 (in Chinese).时东, 李晋峰, 张波, 等.盐湖研究, 2013, 21(2), 52.36 Xu Q.Organic Chemistry, 1979(1), 13 (in Chinese).许庆仁.有机化学, 1979(1), 13.37 Ji L, Li L, Shi D, et al. Hydrometallurgy, 2016, 164, 304.38 Shi C L, Jia Y Z, Jing Y. CIESC Journal, 2015, 66(S1), 253 (in Chinese).石成龙, 贾永忠, 景燕.化工学报, 2015, 66(S1), 253.39 Shi C L, Jing Y, Xiao J, et al. CIESC Journal, 2015, 66(S1), 265 (in Chinese).石成龙, 景燕, 肖江, 等.化工学报, 2015, 66(S1), 265.40 Gao D, Xiaoping Y U, Guo Y, et al. Chemical Research in Chinese Universities, 2015, 31(4), 621.41 Gao D, Guo Y, Yu X, et al. Journal of Chemical Engineering of Japan, 2016, 49(2), 104.42 马培华,邓小川,温现民. 中国专利, 200310122238.3, 2005.43 Ji Z Y, Chen Q B, Yuan J S, et al. Separation & Purification Technology, 2017, 172, 168.44 Nie X Y, Sun S Y, Sun Z, et al. Desalination, 2016, 403, 128.45 Somrani A, Hamzaoui A H, Pontie M.Desalination, 2013, 317(7), 184.46 Sun S Y, Cai L J, Nie X Y, et al. Journal of Water Process Engineering, 2015, 7, 210.47 Song J F, Long D N, Li X M, et al. Environmental Science Water Research & Technology, 2017, 3(4), 93.48 Han C Y, Yang L, Liu H, et al. Journal of Functional Materials, 2017, 48(7), 7115 (in Chinese).韩彩芸, 杨柳, 刘航,等. 功能材料, 2017, 48(7), 7115.49 Chen C, Li Y R, Sun Z X, et al. Nonferrous Metals (Extractive Metallurgy), 2018(1), 29 (in Chinese).陈程, 李亦然, 孙占学, 等. 有色金属(冶炼部分), 2018(1), 29.50 Guo M, Feng Z F, Zhou Y, et al. Guangzhou Chemical Industry, 2016, 44(20), 10 (in Chinese).郭敏, 封志芳, 周园, 等.广州化工, 2016, 44(20), 10.51 Liu G. Research on the extracting of Li+ by precipitation of Al(OH)3 and the recycling of aluminum. Master's Thesis, Chengdu University of Technology, China, 2011 (in Chinese).刘高. 氢氧化铝沉淀法提锂工艺及铝的循环利用研究. 硕士学位论文, 成都理工大学, 2011.52 Luo Q P, Guo P C, Yang Z P, et al. Hydromentallurgy of China, 2012, 31(3), 152 (in Chinese).罗清平, 郭朋成, 杨志平, 等.湿法冶金, 2012, 31(3), 152.53 Li J. Studies on the synthesis of aluminum salt lithium-adsorbent and its adsorptive property. Master's Thesis, Chengdu University of Technology, China, 2011 (in Chinese).李杰. 铝盐锂吸附剂制备工艺及吸附性能研究. 硕士学位论文, 成都理工大学, 2011.54 Xiao X L, Dai Z F, Zhu Z H, et al.Journal of Salt Lake Research, 2005(2), 66 (in Chinese).肖小玲, 戴志锋, 祝增虎, 等.盐湖研究, 2005(2), 66.55 Ren S Z, Zeng Y, Li L G, et al.Guangzhou Chemical Industry, 2013, 41(1), 35 (in Chinese).任世中, 曾英, 李陇岗, 等.广州化工, 2013, 41(1), 35.56 Sun S Y, Zhang Q H,Yu J G.Chinese Journal of Inorganic Chemistry, 2010, 26(4), 567.57 Dong D Q, Wang W X, Wang M L.Applied Mechanics & Materials, 2014, 618, 175.58 Sun S Y, Song X, Zhang Q H, et al.Adsorption-Journal of the International Adsorption Society, 2011, 17(5), 881.59 Xiao J, Nie X, Sun S, et al.Advanced Powder Technology, 2015, 26(2), 589.60 Yang X, Kanoh H, Tang W, et al.Chemistry Letters, 2000, 2000(10), 1192.61 Chitrakar R, Kanoh H, Miyai Y, et al.Cheminform, 2010, 32(4), 11.62 Shi X C, Zhang Z B, Zhou X C, et al.The Chinese Journal of Nonferrous Metals, 2012, 22(11), 3135 (in Chinese).石西昌, 张志兵, 周喜诚, 等.中国有色金属学报, 2012, 22(11), 3135.63 Wang L, Meng C G, Ma W. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2009, 334(1-3), 34.64 Chitrakar R, Makita Y, Ooi K, et al. Dalton Transactions, 2014, 43(23), 8933.65 He G, Zhang L, Zhou D, et al. Ionics, 2015, 21(8), 2219.66 Ji Z Y, Yang F J, Zhao Y Y, et al. Chemical Engineering Journal, 2017, 328,768.67 Chitrakar R, Abe M.Materials Research Bulletin, 1988, 23(9), 1231.68 Bai C, Guo M, Zhang H F, et al. Chemical Industry and Engineering Progress, 2017, 36(3), 802 (in Chinese).柏春, 郭敏, 张慧芳, 等.化工进展, 2017, 36(3), 802.69 Ojuva A, Akhtar F, Tomsia A P, et al. ACS Applied Materials & Interfaces, 2013, 5(7), 2669.70 Dong X, Piao X L, Zhu S L.Journal of Salt and Chemical Industry, 2007, 36(3), 11 (in Chinese).董茜, 朴香兰, 朱慎林.盐业与化工, 2007, 36(3), 11.71 王传福. 中国专利, 201110224059.5, 2012.72 Deberitz J, Kobele K, Schade K. J.P. patent, 19980521023T, 2000.73 Ying H J, Deng T L, Li D C.Inorganic Chemicals Industry, 2009, 41(5), 1 (in Chinese).尹红军, 邓天龙, 李栋婵. 无机盐工业, 2009, 41(5), 1.74 郑绵平, 郭珍旭, 张永生, 等.中国专利, 99105828.3, 2000.75 Zhao C L, Sun Z, Zheng X H, et al.The Chinese Journal of Process Engineering, 2018, 18(1), 20 (in Chinese).赵春龙, 孙峙, 郑晓洪, 等.过程工程学报, 2018, 18(1), 20.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 展红全, 邓册, 吴传琦, 李小红, 谢志鹏, 汪长安. 新颖十二面体钛酸钡纳米晶体的水热生长机理[J]. 材料导报, 2019, 33(z1): 98-101.
[3] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[4] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[5] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[6] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[7] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[8] 卢勇, 冯辉霞, 张晓芳. 金属表面植酸转化膜研究进展[J]. 材料导报, 2019, 33(9): 1455-1461.
[9] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[10] 王亚军, 郭梁, 李泽雪. 一步沉淀法制备三维分等级花状α-Bi2O3微球及其光性能[J]. 材料导报, 2019, 33(8): 1257-1261.
[11] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[12] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[13] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[14] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[15] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed