Molecular Dynamics Simulation of Volatile Odors Diffusion in Recycled Polyethylene
ZHANG Kaiqian1, WANG Zhiwei1,*, ZENG Shaofu1,2, HU Changying1,3
1 Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, College of Packaging Engineering, Jinan University, Zhuhai 519070, Guangdong, China 2 School of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China 3 Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
Abstract: One of the potential risks of recycled polyethylene used in food packaging is the migration of volatile odors in it. In this study, molecular dynamics simulation was used to investigate the diffusion behavior of toluene, 2, 4-dimethylheptane, α-pinene, limonene, diphenyl ether and α-isomethylionone in recycled polyethylene at different temperatures. The diffusion coefficients of odors in recycled polyethylene were calculated by mean square displacement curve and compared with experimental values and Limm-Hollifield model values. We analyzed the diffusion beha-vior of odors from the aspects of topological structure parameters, interaction energy with PE, diffusion activation energy and movement trajectory. The results showed that the diffusion of the odors is influenced by many factors. Molecules with larger volume, radius of gyration and spherical structure are difficult to move, so they have smaller diffusion coefficient. When the solubility parameters of odors are similar to polyethylene, the compatibility between them is good and the molecules are hard to diffuse. From the perspective of energy, the larger the interaction energy with polyethylene and diffusion activation energy of odors, the greater the energy required for molecular movement, and the slower the diffusion process. The trajectories of the odors at different temperatures are long-term vibrations and instantaneous jump, but the range of motion is larger at high temperature, and the trajectories show obvious clusters.
1 Dylan Jubinville, Elnaz Esmizadeh, Sainiwetha Saikrishnan, et al. Sustainable Materials and Technologies, DOI:10. 1016/j. susmat. 2020. e00188. 2 Jon Fuller, David White, Huijun Yi, et al. Chemosphere, 2020, 260, 127589. 3 Miriam Strangl, Martin Schlummer, Andreas Maeurer, et al. Journal of Cleaner Production, 2018, 181, 599. 4 Andrea Cabanes, Miriam Strangl, Eva Ortner, et al. Waste Management, 2020, 104, 228. 5 Camila Dutra, Davinson Pezo, Maria Teresa de Alvarenga Freire, et al. Journal of Chromatography A, 2010, 1218(10), 1319. 6 Guan W Y, Lin Q B, Zhang Y C, et al. Journal of Instrumental Analysis, 2021, 40(11), 1611 (in Chinese). 关伟焰, 林勤保, 张宜彩, 等. 分析测试学报, 2021, 40(11), 1611. 7 Kumar Surendra, Yadav Dharmendra Kumar, Choi Eun-Ha, et al. Scientific Reports, 2018, 8(1), 13271. 8 Komatsu T S, Okimoto N, Koyama Y M, et al. Scientific Reports, 2020, 10(1), 16986. 9 Weng Ying Li, Naik Shiv Rakesh, Dingelstad Nadia, et al. Scientific Reports, 2021, 11(1), 7429. 10 Zhou X W, Gabaly F E, Stavila V, et al. The Journal of Physical Che-mistry C:Nanomaterials and Interfaces, 2016, 120(14), 7500. 11 Ramos J, Vega J F, Martínez S J. European Polymer Journal, 2018, 99, 298. 12 Jasmine C L, Antoine B, Bernardo C, et al. Macromolecules, 2022, 55(2), 498. 13 Li S Y, Sun L, Cai H F. China Plastics, 2021, 35(10), 51(in Chinese). 李韶缘, 孙玲, 蔡恒芳. 中国塑料, 2021, 35(10), 51. 14 Wang Z W, Li B, Lin Q B, et al. Packaging Technology and Science, 2018, 31(5), 277. 15 Anders Börjesson, Edvin Erdtman, Peter Ahlström, et al. Polymer, 2013, 54(12), 2988. 16 Saha S, Bhowmick A K. Journal of Applied Polymer Science, 2019, 136, 47457. 17 Chen X X, Wang Y X, Cheng Z P, et al. ACS Omega, 2020, 5(16), 9408. 18 Wang Z W, Wang P L, Hu C Y. Packaging Technology and Science, 2010, 23, 457. 19 Limm W, Begley T H, Lickly T, et al. Food Additives & Contaminants, 2006, 23(7), 738. 20 Piringer O G, Baner A L. Plastic packaging: interactions with food and pharmaceuticals, Wiley-VCH Press, USA, 2008, pp. 531. 21 Wang Z H, Xin Y. Materials Reports, 2019, 33(8), 1293 (in Chinese). 王忠辉, 辛勇. 材料导报, 2019, 33(8), 1293. 22 Piringer O G. Food Additives and Contaminants, 1994, 11(2), 221. 23 Brandsch J, Mercea P, Piringer O. Food Packaging: Testing Methods and Applications, 2000, 753, 27. 24 Limm W, Hollifield H C. Food Additives & Contaminants, 1996, 13(8), 949. 25 Liu Z G, Lu L X, Wang Z W. Polymer Materials Science & Engineering, 2008, 24(12), 25 (in Chinese). 刘志刚, 卢立新, 王志伟. 高分子材料科学与工程, 2008, 24(12), 25. 26 Norbert L, Anil T, Ronald P D, et al. Polymer, 1999, 40(10), 2797. 27 David Cava, Ramon Catala, Rafael Gavara, et al. Polymer Testing, 2004, 24(4), 483. 28 Lin E Q, You X R, Robert M K, et al. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2017, 522, 152. 29 Alqarni M H, Nazrul H, Alam P, et al. Journal of Molecular Liquids, 2021, 331, 115700. 30 Jasmine Gupta, Cletus Nunes, Shyam Vyas, et al. The Journal of Physical Chemistry B, 2011, 115(9), 2014. 31 Sepideh Amjad-Iranagh, Mahmoud Rahmati, Mahdi Hagi, et al. TheCanadian Journal of Chemical Engineering, 2015, 93(12), 2222. 32 Alain Reyiner, Patrice Dole, Stephane Humbel, et al. Journal of Applied Polymer Science, 2001, 82(10), 2422. 33 Hansen C M. Hansensolubility parameters a user's handbook, CRC Press, USA, 2007, pp. 2. 34 Lu W Q, Pan L, Lu L X, et al. China Plastics Industry, 2019, 47(6), 98 (in Chinese). 路婉秋, 潘嘹, 卢立新, 等. 塑料工业, 2019, 47(6), 98.