Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22080036-8    https://doi.org/10.11896/cldb.22080036
  高分子与聚合物基复合材料 |
再生聚乙烯中挥发性气味物质扩散的分子动力学模拟
章凯倩1, 王志伟1,*, 曾少甫1,2, 胡长鹰1,3
1 暨南大学包装工程学院,广东省普通高校产品包装与物流重点实验室,广东 珠海 519070
2 暨南大学力学与建筑工程学院,广州 510632
3 暨南大学食品科学与工程系,广州 510632
Molecular Dynamics Simulation of Volatile Odors Diffusion in Recycled Polyethylene
ZHANG Kaiqian1, WANG Zhiwei1,*, ZENG Shaofu1,2, HU Changying1,3
1 Key Laboratory of Product Packaging and Logistics of Guangdong Higher Education Institutes, College of Packaging Engineering, Jinan University, Zhuhai 519070, Guangdong, China
2 School of Mechanics and Construction Engineering, Jinan University, Guangzhou 510632, China
3 Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
下载:  全 文 ( PDF ) ( 19676KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 再生聚乙烯中挥发性气味物质的迁移是其用于食品包装的潜在风险之一。本研究使用分子动力学模拟的方法探讨了再生聚乙烯中甲苯、2,4-二甲基庚烷、α-蒎烯、柠檬烯、二苯醚和α-异甲基紫罗兰酮六种挥发性气味物质在不同温度下的扩散行为。通过气味物质分子的均方位移曲线计算了它们的扩散系数,并与实验值和Limm-Hollifield模型值进行了比较。从气味物质的拓扑结构参数、与聚乙烯的相互作用能、扩散活化能以及运行轨迹等方面分析它们的扩散行为。结果表明,这六种挥发性气味物质的扩散受多种因素综合影响。具有较大分子体积和回旋半径以及结构为球型的分子运动较为困难,因此有较小的扩散系数;当气味物质分子的溶解度参数与聚乙烯相近时,两者的相容性较好,分子也不容易扩散。从能量角度来说,气味物质与聚乙烯的相互作用能及其扩散活化能越大,分子运动所需的能量越大,扩散过程越缓慢。同一种物质在不同温度下的运动轨迹表现为长时间的振动与短时间的跳跃,但是在高温下的运动范围较大,轨迹点呈现明显的团簇。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
章凯倩
王志伟
曾少甫
胡长鹰
关键词:  再生聚乙烯  气味物质  扩散  分子动力学模拟    
Abstract: One of the potential risks of recycled polyethylene used in food packaging is the migration of volatile odors in it. In this study, molecular dynamics simulation was used to investigate the diffusion behavior of toluene, 2, 4-dimethylheptane, α-pinene, limonene, diphenyl ether and α-isomethylionone in recycled polyethylene at different temperatures. The diffusion coefficients of odors in recycled polyethylene were calculated by mean square displacement curve and compared with experimental values and Limm-Hollifield model values. We analyzed the diffusion beha-vior of odors from the aspects of topological structure parameters, interaction energy with PE, diffusion activation energy and movement trajectory. The results showed that the diffusion of the odors is influenced by many factors. Molecules with larger volume, radius of gyration and spherical structure are difficult to move, so they have smaller diffusion coefficient. When the solubility parameters of odors are similar to polyethylene, the compatibility between them is good and the molecules are hard to diffuse. From the perspective of energy, the larger the interaction energy with polyethylene and diffusion activation energy of odors, the greater the energy required for molecular movement, and the slower the diffusion process. The trajectories of the odors at different temperatures are long-term vibrations and instantaneous jump, but the range of motion is larger at high temperature, and the trajectories show obvious clusters.
Key words:  recycled polyethylene    volatile odors    diffusion    molecular dynamics simulation
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TS01  
基金资助: 国家自然科学基金国际(地区)合作与交流项目(32061160474)
通讯作者:  * 王志伟,暨南大学包装工程学院教授、博士研究生导师,先后于1983年(东南大学)、1990年(南京航空航天大学)、1994年(同济大学)获得学士、硕士和博士学位。主持完成国家重点研发计划项目、国家科技支撑项目和国家自然科学基金项目。主要研究方向为食品包装安全技术和产品包装防护工程,发表论文300余篇,出版著作4部。wangzw@jnu.edu.cn   
作者简介:  章凯倩,2020年6月于曲阜师范大学获得工学学士学位,现为暨南大学包装工程学院硕士研究生,在王志伟教授的指导下进行研究。目前主要研究领域为食品接触用再生塑料中VOCs(挥发性有机物)的迁移和安全评估。
引用本文:    
章凯倩, 王志伟, 曾少甫, 胡长鹰. 再生聚乙烯中挥发性气味物质扩散的分子动力学模拟[J]. 材料导报, 2023, 37(22): 22080036-8.
ZHANG Kaiqian, WANG Zhiwei, ZENG Shaofu, HU Changying. Molecular Dynamics Simulation of Volatile Odors Diffusion in Recycled Polyethylene. Materials Reports, 2023, 37(22): 22080036-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080036  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22080036
1 Dylan Jubinville, Elnaz Esmizadeh, Sainiwetha Saikrishnan, et al. Sustainable Materials and Technologies, DOI:10. 1016/j. susmat. 2020. e00188.
2 Jon Fuller, David White, Huijun Yi, et al. Chemosphere, 2020, 260, 127589.
3 Miriam Strangl, Martin Schlummer, Andreas Maeurer, et al. Journal of Cleaner Production, 2018, 181, 599.
4 Andrea Cabanes, Miriam Strangl, Eva Ortner, et al. Waste Management, 2020, 104, 228.
5 Camila Dutra, Davinson Pezo, Maria Teresa de Alvarenga Freire, et al. Journal of Chromatography A, 2010, 1218(10), 1319.
6 Guan W Y, Lin Q B, Zhang Y C, et al. Journal of Instrumental Analysis, 2021, 40(11), 1611 (in Chinese).
关伟焰, 林勤保, 张宜彩, 等. 分析测试学报, 2021, 40(11), 1611.
7 Kumar Surendra, Yadav Dharmendra Kumar, Choi Eun-Ha, et al. Scientific Reports, 2018, 8(1), 13271.
8 Komatsu T S, Okimoto N, Koyama Y M, et al. Scientific Reports, 2020, 10(1), 16986.
9 Weng Ying Li, Naik Shiv Rakesh, Dingelstad Nadia, et al. Scientific Reports, 2021, 11(1), 7429.
10 Zhou X W, Gabaly F E, Stavila V, et al. The Journal of Physical Che-mistry C:Nanomaterials and Interfaces, 2016, 120(14), 7500.
11 Ramos J, Vega J F, Martínez S J. European Polymer Journal, 2018, 99, 298.
12 Jasmine C L, Antoine B, Bernardo C, et al. Macromolecules, 2022, 55(2), 498.
13 Li S Y, Sun L, Cai H F. China Plastics, 2021, 35(10), 51(in Chinese).
李韶缘, 孙玲, 蔡恒芳. 中国塑料, 2021, 35(10), 51.
14 Wang Z W, Li B, Lin Q B, et al. Packaging Technology and Science, 2018, 31(5), 277.
15 Anders Börjesson, Edvin Erdtman, Peter Ahlström, et al. Polymer, 2013, 54(12), 2988.
16 Saha S, Bhowmick A K. Journal of Applied Polymer Science, 2019, 136, 47457.
17 Chen X X, Wang Y X, Cheng Z P, et al. ACS Omega, 2020, 5(16), 9408.
18 Wang Z W, Wang P L, Hu C Y. Packaging Technology and Science, 2010, 23, 457.
19 Limm W, Begley T H, Lickly T, et al. Food Additives & Contaminants, 2006, 23(7), 738.
20 Piringer O G, Baner A L. Plastic packaging: interactions with food and pharmaceuticals, Wiley-VCH Press, USA, 2008, pp. 531.
21 Wang Z H, Xin Y. Materials Reports, 2019, 33(8), 1293 (in Chinese).
王忠辉, 辛勇. 材料导报, 2019, 33(8), 1293.
22 Piringer O G. Food Additives and Contaminants, 1994, 11(2), 221.
23 Brandsch J, Mercea P, Piringer O. Food Packaging: Testing Methods and Applications, 2000, 753, 27.
24 Limm W, Hollifield H C. Food Additives & Contaminants, 1996, 13(8), 949.
25 Liu Z G, Lu L X, Wang Z W. Polymer Materials Science & Engineering, 2008, 24(12), 25 (in Chinese).
刘志刚, 卢立新, 王志伟. 高分子材料科学与工程, 2008, 24(12), 25.
26 Norbert L, Anil T, Ronald P D, et al. Polymer, 1999, 40(10), 2797.
27 David Cava, Ramon Catala, Rafael Gavara, et al. Polymer Testing, 2004, 24(4), 483.
28 Lin E Q, You X R, Robert M K, et al. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2017, 522, 152.
29 Alqarni M H, Nazrul H, Alam P, et al. Journal of Molecular Liquids, 2021, 331, 115700.
30 Jasmine Gupta, Cletus Nunes, Shyam Vyas, et al. The Journal of Physical Chemistry B, 2011, 115(9), 2014.
31 Sepideh Amjad-Iranagh, Mahmoud Rahmati, Mahdi Hagi, et al. The Canadian Journal of Chemical Engineering, 2015, 93(12), 2222.
32 Alain Reyiner, Patrice Dole, Stephane Humbel, et al. Journal of Applied Polymer Science, 2001, 82(10), 2422.
33 Hansen C M. Hansen solubility parameters a user's handbook, CRC Press, USA, 2007, pp. 2.
34 Lu W Q, Pan L, Lu L X, et al. China Plastics Industry, 2019, 47(6), 98 (in Chinese).
路婉秋, 潘嘹, 卢立新, 等. 塑料工业, 2019, 47(6), 98.
[1] 张苑竹, 杨佳铭, 魏纲, 黄森乐. 基于扩散-对流模型的海底混凝土隧道耐久寿命预测[J]. 材料导报, 2023, 37(6): 21060165-5.
[2] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[3] 马柯榕, 张浩, 张永帅, 李坤, 杜秀娟, 杨雯. Mn在铁素体Fe-25%Cr合金中的迁移行为研究[J]. 材料导报, 2023, 37(19): 22040395-5.
[4] 丁健翔, 夏欣欣, 张凯歌, 丁宽宽, 马成建, 张培根, 孙正明. 不同制备温度下Ti2SnC增强银基复合材料的物相、微观组织和物理性能演变[J]. 材料导报, 2023, 37(16): 22040006-8.
[5] 徐宁,汪海年, 陈玉, 丁鹤洋, 冯珀楠, 赵云飞. 基于分子动力学的废食用油改性沥青自愈合特性研究[J]. 材料导报, 2023, 37(15): 21110097-8.
[6] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[7] 李锺奥, 陆春华, 成亮, Emmanuel. 扩散法用于微生物矿化修复混凝土竖向裂缝的试验研究[J]. 材料导报, 2023, 37(13): 21070218-6.
[8] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[9] 李秋平, 张庆军, 朱立光. 次生针状铁素体激发形核行为研究[J]. 材料导报, 2022, 36(Z1): 21040258-5.
[10] 刘鑫, 帅美荣, 李海斌, 谢广明, 常彬彬, 李亮. 微张力对不锈钢/碳钢界面复合质量及原子扩散的影响[J]. 材料导报, 2022, 36(23): 21050253-6.
[11] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[12] 马晓波, 曹志杰, 沈宏君, 樊凯, 康欣欣, 米金辉. 低气压下N型晶硅太阳电池P型发射极的两步扩散法制备研究[J]. 材料导报, 2022, 36(22): 21050044-5.
[13] 张可欣, 李庚伟, 杨少延, 魏洁. n-GaN上Au/Zr和Au/Ti金属电极的界面反应和金属间互扩散行为对比研究[J]. 材料导报, 2022, 36(21): 21050131-6.
[14] 洪亢, 朱凯, 刘声楚, 李赏, 潘牧. 电化学腐蚀对气体扩散层氧传质的影响[J]. 材料导报, 2022, 36(20): 21030161-5.
[15] 赵子君, 王旭. Ag15Cu85二元合金高温氧化行为对去合金机制的影响[J]. 材料导报, 2022, 36(2): 20110140-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed