Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 21050044-5    https://doi.org/10.11896/cldb.21050044
  无机非金属及其复合材料 |
低气压下N型晶硅太阳电池P型发射极的两步扩散法制备研究
马晓波*, 曹志杰, 沈宏君, 樊凯, 康欣欣, 米金辉
宁夏大学物理与电子电气工程学院,银川 750021
Study on Preparation of P-type Emitter for N-type Crystalline Silicon Solar Cell by Two-step Diffusion Process Under Low Pressure
MA Xiaobo*, CAO Zhijie, SHEN Hongjun, FAN Kai, KANG Xinxin, MI Jinhui
School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China
下载:  全 文 ( PDF ) ( 2218KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 太阳能电池是人类使用清洁能源的重要组成部分,在“碳达峰与碳中和”国际政策背景下,大力发展清洁能源技术,是解决能源环境问题的根本性途径。N型太阳能电池具有杂质容忍度大、少子寿命长等优点,更有益于提高电池转换效率和降低生产成本,是高效晶硅太阳能电池发展的主流。然而,硼原子的分凝系数远高于磷原子,使得硼扩散工艺十分困难。基于此,本工作采用两步扩散法,研究低气压下气体流量、预沉积时间、再分布时间等工艺参数对P型发射极方阻和均匀性的影响。通过对硼扩散后N型电池的少子寿命衰减的物理机制进行深入剖析,对所制备N型电池的性能进行表征。最终,在优化工艺的条件下,实现了P发射极的方阻不均匀性不高于4%的有效改善。本研究可为高效N型电池的制备提供重要的技术参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马晓波
曹志杰
沈宏君
樊凯
康欣欣
米金辉
关键词:  N型晶硅电池  P型发射极  两步扩散法    
Abstract: Solar cells have become an important part of clean energy. Under the background of the international policy of carbon peak and carbon neutral, vigorously developing clean energy technology isa fundamental method to solve the energy and environment problems. N-type solar cells have the advantages of large impurity tolerance and long minority carrier lifetime, which are more beneficial to improve the conversion efficiency of the cell and reduce the cost. It is the mainstream of the high-efficiency crystalline silicon solar cells. However, the separation coefficient of boron atom is much higher than that of phosphorus atom, which makes the boron diffusion process more difficult than phosphorus diffusion. Based on these, two-step diffusion method were adopted under a low pressure to study the influence of process parameters such as the gas flow rate, the pre-deposition time and the redistribution time on the square resistance and the uniformity of diffusion sheet. The physical mechanism of the minority carrier life decay of the N-type cells after boron diffusion was analyzed, and the properties of the prepared N-type cells were characterized. Finally, the square resistance inhomogeneity of the P-type emitter is improved less than 4% under the optimized process. And these results provide an important technical reference for the preparation of the high-efficiency N-type solar cells.
Key words:  N-type crystalline silicon solar cell    P-type emitter    two-step diffusion
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TM914.4+1  
基金资助: 宁夏重点研发项目(2018BEE03002;2018BEB04027);国家自然科学基金(12164035;51801107);第四批宁夏青年科技人才托举工程(TJGC2019002);大学生创新项目(2021107490232)
通讯作者:  * maxiaobo@nxu.edu.cn   
作者简介:  马晓波,博士,讲师。2008年6月于内蒙古师范大学获得理学学士学位,2011年6月于宁夏大学获得理学硕士学位,2017年于北京航空航天大学获得博士学位。主要从事光伏材料与器件的相关研究。目前以第一作者发表论文10余篇,第一发明人授权发明专利2项。
引用本文:    
马晓波, 曹志杰, 沈宏君, 樊凯, 康欣欣, 米金辉. 低气压下N型晶硅太阳电池P型发射极的两步扩散法制备研究[J]. 材料导报, 2022, 36(22): 21050044-5.
MA Xiaobo, CAO Zhijie, SHEN Hongjun, FAN Kai, KANG Xinxin, MI Jinhui. Study on Preparation of P-type Emitter for N-type Crystalline Silicon Solar Cell by Two-step Diffusion Process Under Low Pressure. Materials Reports, 2022, 36(22): 21050044-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050044  或          http://www.mater-rep.com/CN/Y2022/V36/I22/21050044
1 Smith K D, Gummel H K, Bode J D, et al.Bell System Technical Journal, 1963, 3, 1765.
2 Fischer H, Pschunder W.In:10th IEEE Photo-voltaic Specialists Confe-rence. Palo Alto, 1973, pp.404.
3 Schmidt J, Aberle A G, Hezel R. In:26th IEEE Photovoltaic Specialists Conference. Las Vegas, 1997, pp.13.
4 Yang Z J, Shen H.Materials Reports B:Research Papers, 2010, 24(4), 126.
杨灼坚, 沈辉. 材料导报:研究篇, 2010, 24(4), 126.
5 Macdonald D, Geerlings L J.Applied Physics Letters, 2004, 85(18), 4061.
6 Ding D, Lu G L, Li Z P, et al.Solar Energy, 2019, 193(15), 494.
7 Zhang S, Meng F Y, Søndenå R, et al.Energy Procedia, 2017, 124, 321.
8 Michael R, Ages M, Udo R, et al.Energy Procedia, 2016, 92, 412.
9 Wang P Q, Sridharan R, Ng X R, et al.Solar Energy Materials and Solar Cells, 2021, 220(110834), 1.
10 Yin H P, Tang K, Zhang J B, et al.Solar Energy Materials and Solar Cells, 2020, 208(110345), 1.
11 Ma X B, Zhang W J, Zhang W, et al.Materials Science in Semiconductor Processing, 2017, 61, 93.
12 Ryu K, Madani K, Rohatgi A, et al.Current Applied Physics, 2018, 18, 231.
13 Lerat J F, Desrues T, Perchec J L, et al.Energy Procedia, 2016, 92, 697.
14 Huang Y Y, Ok Y W, Madani K, et al.Solar Energy Materials and Solar Cells, 2020, 214(110585), 1.
15 Singha B, Solanki C S.Materials Today: Proceedings, 2018, 5, 23477.
16 Monna R, Sanzone V, Diaz J, et al.Energy Procedia, 2016, 92, 479.
17 Komatsu Y, Mihailetchi V D, Geerligs L J, et al.Solar Energy Materials & Solar Cells, 2009, 93(6), 750.
18 Liu A Y, Yan D, Phang S P, et al.Solar Energy Materials and Solar Cells, 2018, 179, 136.
19 Yu J. Study on emitter optimization mechanism and electrical properties of polycrystalline solar cells. Master's Thesis, University of Electronic Science and Technology of China, China,2012(in Chinese).
俞健. 多晶太阳能电池发射极优化机理及电性能研究. 硕士学位论文, 电子科技大学, 2012.
20 He G T. Study on diffusion process of crystalline silicon solar cell. Master's Thesis, University of Electronic Science and Technology of China,China,2009(in Chinese).
何堂贵. 晶体硅太阳电池制作中的扩散工艺研究. 硕士学位论文, 电子科技大学, 2009.
[1] 杨秀钰, 陈诺夫, 张航, 陶泉丽, 徐甲然, 陈梦, 陈吉堃. 对非晶硅薄膜进行快速磷扩散以获得本征薄层异质结[J]. 材料导报, 2019, 33(20): 3353-3357.
[2] 陈俊帆, 赵生盛, 高天, 徐玉增, 张力, 丁毅, 张晓丹, 赵颖, 侯国付. 高效单晶硅太阳电池的最新进展及发展趋势[J]. 材料导报, 2019, 33(1): 110-116.
[3] 赖海文, 韩会丽, 黄伟宏, 董娴, 李冰之, 沈辉, 梁宗存. 户外运行17年单晶硅光伏组件性能失效研究[J]. 材料导报, 2019, 33(2): 215-219.
[4] 安世崇,黄茜,陈沛润,张力,赵颖,张晓丹. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(3): 3069-3079.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed