Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15094-15106    https://doi.org/10.11896/cldb.20040019
  无机非金属及其复合材料 |
基于计算流体动力学的陶瓷膜过滤过程模拟研究进展
高正源, 刘洋志, 任俊州, 安治国
重庆交通大学机电与车辆工程学院,重庆 400074
Based on Computational Fluid Dynamics
GAO Zhengyuan, LIU Yangzhi, REN Junzhou, AN Zhiguo
School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 9711KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 陶瓷膜过滤技术具有经济高效、过滤稳定、环境适应性强等优势,在水处理、气体过滤、化工、医药及食品生产等众多领域有着广泛应用,并且在分离、澄清、纯化、浓缩、除菌、除盐等生产工艺过程中展现出巨大潜力。然而,在过滤过程中,原料中的有机物、无机盐、胶体粒子和污泥絮体等物质在膜表面或膜孔中的吸附和沉积作用会导致膜污染。膜污染是阻碍陶瓷膜过滤技术发展的主要问题之一。通过计算流体动力学(CFD)模拟仿真对陶瓷膜过滤过程的渗透机理、膜污染机理及浓差极化机理等进行探讨是一种经济有效的研究方法。
现已经能通过CFD控制方程和压降模型、颗粒运动模型、颗粒沉积模型、传质模型及串联阻力模型等CFD模型对陶瓷膜过滤过程的渗透、膜污染及浓差极化等现象进行模拟和预测;通过对仿真结果的分析讨论,加深对膜过滤过程的机理研究。此外,研究者们通过CFD数值模拟,研究陶瓷膜元件和膜组件结构、过滤工艺参数以及过滤器结构等参数对陶瓷膜过滤性能的影响规律,并进行参数优化,来提高陶瓷膜过滤性能,如降低污染速率、提高过滤效率、延长膜清洗周期和膜使用寿命等。
本文介绍了CFD技术的原理和优势;评述了CFD技术在陶瓷膜及膜组件结构优化和过滤过程中膜污染的研究进展;讨论了在膜污染过程的模拟中所用到的相关CFD模型;重点分析了陶瓷膜过滤过程中的膜结构、操作参数和过滤器结构等工艺参数对陶瓷膜内部压力分布、浓差极化、渗透速度及流场分布等流体特性的影响规律。最后展望了陶瓷膜过滤过程CFD模拟仿真的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高正源
刘洋志
任俊州
安治国
关键词:  陶瓷膜  计算流体动力学(CDF)  膜过滤过程  膜结构优化  过滤性能  膜污染    
Abstract: Ceramic membrane filtration technology with high efficiency and economy, stable filtration and strong environmental adaptability, has been used in a wide fields, such as water treatment, gas filtration, chemical industry, pharmaceutical industry and food production. And it shows great potential in the process of separation, clarification, purification, concentration, sterilization and desalination. However, in the process of filtration, membrane fouling which is the adsorption and deposition of organics, inorganic salts, colloidal particles and sludge flocs in raw water on the membrane surface or membrane pore is one of the main problems of development on ceramic membrane filtration technology. Computational fluid dynamics (CFD) simulation of membrane filtration process is an economic and effective research method. Through this method, the mathematical model and simulation model of the membrane filtration process were established and improved continuously. The permeation mechanism, membrane fouling mechanism and concentration polarization mechanism of membrane filtration process were discussed.
Nowadays, the phenomena of permeation, membrane fouling and concentration polarization in ceramic membrane filtration process can be simulated and predicted by CFD control equations and CFD models. Through the analysis and discussion of the simulation results, the mechanism of membrane filtration process can be further studied. The effects of the structural parameters of membrane and membrane module, filtration process parameters and filter structure parameters on the filtration performance of ceramic membrane were studied. And these parameters were optimized by CFD simulation to reduce pollution rate and improve filtration efficiency and membrane service life.
In this paper, the principle and advantages of CFD technology were introduced; the research progress of CFD technology in membrane and membrane module structure optimization and membrane fouling in filtration process were reviewed; the relevant CFD models used in CFD simulation of membrane fouling were discussed; the effects of fluid characteristics in ceramic membrane, such as pressure distribution, concentration polarization, penetration speed and flow field distribution were analyzed by the different parameters, which are structure of membrane and membrane module, operation parameters of membrane filtration process and filter structure. Finally, the development trend of CFD simulation of ceramic membrane filtration process was introduced.
Key words:  ceramic membrane    computational fluid dynamics (CFD)    filtration process    membrane structure optimization    filtration perfor-mance    membrane fouling
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TQ028.8  
基金资助: 重庆市科委项目(cstc2019jcyj-msxmX0761);重庆市教委科学技术研究项目(KJQN201800731
作者简介:  高正源,重庆大学和曼彻斯特大学联合培养博士研究生,重庆交通大学机电与车辆工程学院副教授,硕士研究生导师。重庆表面工程学会副理事长,重庆有色金属学会常务理事,重庆材料学会理事。主要从事机械工程材料、轻金属材料与表面工程方面的教学、研究和开发工作。已在国内外重要刊物发表论文30余篇,出版著作1部(本),发布国家标准3项。
安治国,重庆交通大学机电与车辆工程学院副教授,重庆模具工业协会会员。主要从事表面工程及材料加工工程中的CAD/CAE技术研究,在重要期刊发表论文70余篇,授权专利6项。
引用本文:    
高正源, 刘洋志, 任俊州, 安治国. 基于计算流体动力学的陶瓷膜过滤过程模拟研究进展[J]. 材料导报, 2021, 35(15): 15094-15106.
GAO Zhengyuan, LIU Yangzhi, REN Junzhou, AN Zhiguo. Based on Computational Fluid Dynamics. Materials Reports, 2021, 35(15): 15094-15106.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040019  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15094
1 Guo F, Su D, Liu Y, et al. Ceramics International,2018,44(11),13444.
2 Dong Y C, Lin B, Zhou J E, et al. Materials Characterization,2011,62(4),409.
3 Fiksdal L, Leiknes T. Journal of Membrane Science,2006,279(1-2),364.
4 Zhang D W, Mi S C, Fu C, et al. Surface Technology,2017,46(11),22(in Chinese).
张大为,米世超,付超,等.表面技术,2017,46(11),22.
5 Mestre S, Gozalbo A, Lorente-Ayza M M, et al. Journal of the European Ceramic Society,2019,39(12),3392.
6 Zou D, Qiu M H, Chen X F, et al. Journal of Membrane Science,2017,524,141.
7 Hu H X, Hu R, Hu L C. Journal of Logistics Engineering College,2006,22(3),57(in Chinese).
胡海修,胡蓉,胡连超,等.后勤工程学院学报,2006,22(3),57.
8 Zhao Y Y, Wang X M, Yang H W, et al. Journal of Membrane Science,2018,563,734.
9 Le M H, Kim K J, Jeong S Y, et al. Journal of Industrial and Enginee-ring Chemistry,2019,72,125.
10 Kazemi A S, Patterson B, LaRue R J, et al. Separation and Purification Technology,2019,215,299.
11 Ghidossia R, Veyreta D, Moulinb P. Chemical Engineering and Proces-sing: Process Intensification,2006,45(6),437.
12 Keir G, Jegatheesan V. Reviews in Environmental Science and Bio/Technology,2013,13(2),83.
13 Bai Z G, Fan C J, Zhang J S, et al. In: National Academic Conference of Environmental Engineering in 2018. Beijing,2018,pp. 5(in Chinese).
白祖国,范从军,张建嵩,等.《环境工程》2018年全国学术年会.北京,2018,pp. 5.
14 He Z M, Lyu Z Y, Gu Q L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,578,123513.
15 Oatley-Radcliffe D L, Walters M, Ainscough T J, et al. Journal of Water Process Engineering,2017,19,164.
16 Anis S F, Hashaikeh R, Hilal N. Journal of Water Process Engineering,2019,32,100941.
17 Geng Q Y, Wang J, Luo N, et al. Industrial water treatment,2012(3),6(in Chinese).
耿全月,王捷,罗南等.工业水处理,2012(3),6.
18 Bottino A, Capannelli C, Del Borghi A, et al. Desalination,2001,141(1),75.
19 Doleek P. Journal of Membrane Science,1995,100(2),111.
20 Doleek P, Cakl J. Journal of Membrane Science,1998,149(2),171.
21 Yang Z, Cheng J C, Yang C. Journal of Chemical Engineering,2015(8),374(in Chinese).
杨钊,程景才,杨超,等.化工学报,2015(8),374.
22 Du Y H, Feng Q Y, Liu E H. Membrane Science and Technology,2016,36(1),72(in Chinese).
杜玉红,酆启胤,刘恩华,等.膜科学与技术,2016,36(1),72.
23 Frederic E, Guigui C, Jacob M, et al. Journal of Membrane Science,2018,567,290.
24 Tong Y J, Huang L K, and Li W X. Chinese Journal of Chemical Engineering, DOI:10.1016/j.cjche.2019.11.006.
25 Yang Z, Cheng J C, Yang C, et al. Chinese Journal of Chemical Engineering,2016,24(10),1375.
26 Peng W B, Qi H, Chen G L. Journal of Chemical Engineering,2007(8),2021(in Chinese).
彭文博,漆虹,陈纲领,等.化工学报,2007(8),2021.
27 Shi J, Liang H G. Journal of Logistics Engineering College,2011,27(6),56(in Chinese).
师杰,梁恒国.后勤工程学院学报,2011,27(6),56.
28 Liang H G, Shi J, Lv Y Z. Journal of Chongqing Jianzhu University,2012(S1),232(in Chinese).
梁恒国,师杰,吕玉正.土木建筑与环境工程,2012(S1),232.
29 Yang D W, Zhao G P, Wang Y H. Filtration and Separation,2005(4),24(in Chinese).
杨德武,赵国平,王艳红,等.过滤与分离,2005(4),24.
30 Tang N, Liu T Y, Hua X X, et al. Membrane Science and Technology,2020,40(2),97(in Chinese).
唐娜,刘天宇,华欣欣,等.膜科学与技术,2020,40(2),97.
31 Xiong C C, Li W X, Liu Y F, et al. CIESC Journal,2017,68(11),4341(in Chinese).
熊长川,李卫星,刘业飞,等.化工学报,2017,68(11),4341.
32 Voigt I, Richter H, Weyd M, et al. Chemie Ingenieur Technik,2019,91(10),1454.
33 Chen J C, Li Q L, Elimelech M. Advances in Colloid and Interface Science,2004,107(2-3),83.
34 Aroussi A., Simmons K, Pickering S J. Fuel,2001,80(3),335.
35 Rahimi M, Madaeni S S, Abolhasani M, et al. Chemical Engineering and Processing: Process Intensification,2009,48(9),1405.
36 Pradhan M, Vigneswaran S, Aim R B, et al. Desalination,2014,350,14.
37 Zare M, Zokaee A F, Fouladitajar A. Desalination,2013,324,37.
38 Qian F P, Huang N J, Lu J L, et al. Computers & Chemical Engineering,2014,71,478.
39 Yue C, Zhang Q, Zhai Z Q. Journal of Aerosol Science,2016,101,174.
40 Tong Z X, Li M J, He Y L, et al. Applied Energy,2017,185,2181.
41 Ahmad A L, Lau K K, Bakar M Z A, et al. Computers & Chemical Engineering,2005,29(10),2087.
42 Ghidossi R, Daurelle J V, Veyret D, et al. Chemical Engineering Journal,2006,123(2),117.
43 Pak A, Mohammadi T, Hosseinalipour S M, et al. Desalination,2007,222(1-3),482.
44 Schausberger P, Norazman N, Li H, et al. Journal of Membrane Science,2009,337(1-2),1.
45 Asefi H, Alighardashi A, Fazeli M, et al. Journal of Environmental Chemical Engineering,2019,7(5),103275.
46 Fotovati S, Hosseini S A, Vahedi Tafreshi H, et al. Chemical Enginee-ring Science,2011,66(18),4036.
47 Fotovati S, Vahedi Tafreshi H, Pourdeyhimi B. Separation and Purification Technology,2012,98,344.
48 Ahmad A L, Lau K K, Bakar M Z A. Journal of Membrane Science,2005,262(1-2),138.
49 Giglia S, Straeffer G. Journal of Membrane Science,2012,417-418,144.
50 Günther J, Hobbs D, Albasi C, et al. Journal of Membrane Science,2012,389,126.
51 Lee K S, Sohn J R, Park Y O. Journal of Industrial and Engineering Chemistry,2015,21,101.
52 Liu K, Zhao Y, Jia L Y, et al. Powder Technology,2019,353,27.
53 Liu K, Zhao Y, Jia L Y. Separation and Purification Technology,2020,233,116039.
54 Damak K, Ayadia A, Zeghmati B, et al. Desalination,2004,161(1),67.
55 Ren Z A, Hao D, Xie H J. Chemical Equipment Technology,2009,30(2),38(in Chinese).
任志安,郝点,谢红杰.化工装备技术,2009,30(2),38.
56 Li D, Wang H, Wang K. Membrane Science and Technology,2019,39(2),55(in Chinese).
李丹,王慧,王昆,等.膜科学与技术,2019,39(2),55.
57 Qin H B, Bai X N, Hu S G. Hydraulic Coal Mining and PipelineTransportation,2001(2),3(in Chinese).
秦宏波,白晓宁,胡寿根.水力采煤与管道运输,2001(2),3.
58 Shao H S, Pan Y Q, Yu L. Computer and Applied Chemistry,2012,9(8),938(in Chinese).
邵会生,潘艳秋,俞路.计算机与应用化学,2012,9(8),938.
59 Zhou Z Y, Kuang S B, Chu K W, et al. Journal of Fluid Mechanics,2010,661,482.
60 Lin J, Shen H, Jing W H. Journal of Chemical Engineering,2016,67(6),2246(in Chinese).
林进,沈浩,景文珩.化工学报,2016,67(6),2246.
61 Lee H G, Balachandar S. International Journal of Multiphase Flow,2017,88,116.
62 Bolton G R, Boesch A W, Lazzara M J. Journal of Membrane Science,2006,279(1-2),625.
63 Jin C, Potts I, Reeks M W. International Journal of Multiphase Flow,2016,79,62.
[1] 同帜, 黄开佩, 杨博文, 张健需. 低成本新型多孔陶瓷膜支撑体的制备及性能[J]. 材料导报, 2021, 35(6): 6054-6059.
[2] 孙娜,王铎,汪锰. 正渗透膜材料及其制备方法的研究进展[J]. 材料导报, 2019, 33(17): 2966-2975.
[3] 范兆如, 周守勇, 李梅生, 赵宜江, 邢卫红. 基于低品位凹凸棒石黏土的陶瓷膜支撑体制备[J]. 材料导报, 2018, 32(20): 3638-3644.
[4] 孟仙, 邓橙, 朱孟府, 李奎, 邓宇. 纳米氧化镁表面修饰制备荷正电微孔陶瓷膜及其性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 16-20.
[5] 陈超,张玉平,陈为为,程焕武,王鲁. 铝合金表面蓝色微弧氧化陶瓷膜的制备及性能研究*[J]. 材料导报编辑部, 2017, 31(10): 121-126.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed