Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 22040195-11    https://doi.org/10.11896/cldb.22040195
  无机非金属及其复合材料 |
我国锂渣资源化利用研究进展
王雪1, 王恒2, 王强1,*
1 清华大学土木工程系,北京 100084
2 北京城建集团有限责任公司,北京 100088
Research Progress on Resource Utilization of Lithium Slag in China
WANG Xue1, WANG Heng2, WANG Qiang1,*
1 Department of Civil Engineering, Tsinghua University, Beijing 100084, China
2 Beijing Urban Construction Group Co., Ltd., Beijing 100088, China
下载:  全 文 ( PDF ) ( 28204KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着锂电池行业的快速发展,锂盐生产过程中产生的锂渣堆存量剧增,其利用受到关注。本文比较了我国两种主要的锂渣类型在化学成分、性能上的不同,并将现有锂渣资源化利用的十六种途径归纳为五大类,主要有:锂渣的水化活性、高硅铝含量、多孔和高吸附性、质轻和色浅等特征,以及对有价组分进行资源化回收。其中,锂渣作为水泥掺合料和制备分子筛方面的研究较为充分。本文重点归纳了锂渣作为水泥掺合料的作用机理和影响机制;总结了制备的分子筛种类及制备流程。最后,提出锂渣资源化利用应基于精细化的原料分析,充分利用其相应优势,实现高值化发展;应鼓励将锂渣与其他废渣协同利用,实现优势互补,并注重其产品的耐久性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王雪
王恒
王强
关键词:  锂渣  资源化利用  掺合料  分子筛  吸附作用  硅铝    
Abstract: With the rapid development of the lithium battery industry, lithium slag, a waste residue produced in the production process of lithium salt, has a sharply increasing stacking stock. As a result, the utilization of lithium slag has attracted much attention. This paper compares the differences in chemical composition and properties of the two main types of lithium slag in China. In addition, the existing sixteen ways of resource utilization of lithium slag are classified into five categories. They mainly utilize the different characteristics of steel slag, including the pozzolanic property, high silicon and aluminum content, porous and high adsorption, light weight and light color, as well as recovery potential of valuable components. Among them, the studies on lithium slag as cement admixture and for preparation of zeolite are relatively sufficient. Therefore, this paper summarizes the influence mechanism of lithium slag as cement admixture, and summarizes the types of zeolite and the corresponding preparation process. Finally, it is proposed that the resource utilization of lithium slag should make full use of its corresponding advantages and achieve high-value development by refined raw material analysis and in-depth research. It is suggested that the synergistic utilization of lithium slag with other waste residues should be encouraged to show complementary advantages. It is also suggested to pay attention to the durability of the products.
Key words:  lithium slag    resource utilization    admixture    zeolite    adsorption    aluminosilicate mineral
发布日期:  2023-01-03
ZTFLH:  TB332  
基金资助: 国家自然科学基金(52011530179)
通讯作者:  w-qiang@tsinghua.edu.cn   
作者简介:  王雪,2015年6月、2022年1月于北京科技大学分别获得工学学士学位和博士学位。现为清华大学土木工程学院博士后研究人员,在王强教授的课题组进行研究。目前主要研究领域为固体废弃物制备建筑材料。获授权专利6项,发表论文10余篇,包括Cement and Concrete Research、Construction and Building Materials、Journal of Building Enginee-ring、 Energies等。
王强,2006年7月和2010年7月分别于清华大学获得土木工程学士学位和博士学位,现为清华大学长聘副教授、清华大学土木系副系主任。主要研究领域为工业固体废渣在建筑材料中的高效应用和现代混凝土理论与技术。主持国家面上项目3项,获得国家自然科学基金优秀青年基金项目,并主持多项工程课题。出版专著2部,主编团体4部,发表SCI论文60多篇。
引用本文:    
王雪, 王恒, 王强. 我国锂渣资源化利用研究进展[J]. 材料导报, 2022, 36(24): 22040195-11.
WANG Xue, WANG Heng, WANG Qiang. Research Progress on Resource Utilization of Lithium Slag in China. Materials Reports, 2022, 36(24): 22040195-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040195  或          http://www.mater-rep.com/CN/Y2022/V36/I24/22040195
1 Liu S, Yang Y, Hu Y X, et al. China Energy and Environmental Protection, 2022, 44(1), 215 (in Chinese).
刘石, 杨毅, 胡亚轩, 等. 能源与环保, 2022, 44(1), 215.
2 Zhai M Y, Zhao J H, Wang D M. Materials Reports A:Review Papers, 2017, 31(3), 139 (in Chinese).
翟梦怡, 赵计辉, 王栋民. 材料导报:综述篇, 2017, 31(3), 139.
3 Wu F F, Wang G Q, Shi K B, et al. Fly Ash Comprehensive Utilization, 2012(3), 46 (in Chinese).
吴福飞, 王国强, 侍克斌, 等. 粉煤灰综合利用, 2012(3), 46.
4 Kuang G, Liu Y, Li H, et al. Hydrometallurgy, 2018, 177, 49.
5 Mao Y Z. Study on pozzolanic activity of lithium slag from lithium mica in Yichun and its effect on the performance of cement and concrete. Master's Thesis, Nanchang University, China, 2017 (in Chinese).
毛意中. 宜春锂云母提锂渣的火山灰活性及其对水泥混凝土性能的影响研究. 硕士学位论文学位论文, 南昌大学, 2017.
6 Dong P, Ahmad M R, Chen B, et al. Journal of Cleaner Production, 2021, 316, 128371.
7 Wang Y R. Evaluation of pozzolanic activity of lithium slag and study on microstructure characteristics of composite cementitious materials. Ph. D. Thesis, China University of Mining & Technology(Beijing), China, 2019 (in Chinese).
王奕仁. 锂渣的火山灰活性评价及其复合胶凝材料微结构特性研究. 博士学位论文, 中国矿业大学(北京), 2019.
8 Li Z J. Experimental study on the strength and the cracking resistance at early ages of high-performance concrete added with lithium slag and steel slag. Master's Thesis, Xinjiang Agricultural University, China, 2013 (in Chinese).
李志军. 复掺锂渣、钢渣高性能混凝土强度及早期抗裂性能试验研究. 硕士学位论文, 新疆农业大学, 2013.
9 Huang W M. Experimental study on basic mechanical properties and durability of the desert sand concrete with lithium slag and polypropylene fiber. Master's Thesis, Xinjiang University, China, 2017 (in Chinese).
黄伟敏. 沙漠砂锂渣聚丙烯纤维混凝土力学性能及耐久性试验研究. 硕士学位论文, 新疆大学, 2017.
10 Li B L. Hydration mechanism and durability of binary and ternary composite cement incorporating ferronickel slag and lithium slag. Ph. D. Thesis, Southeast University, China,2019 (in Chinese).
李保亮. 水泥-镍渣-锂渣二元及三元复合胶凝材料的水化机理及耐久性. 博士学位论文, 东南大学, 2019.
11 Hu Z Y. Study on concrete mixing lithium slag with other mineral admixtures. Master's Thesis, Chongqing University, China,2008 (in Chinese).
胡志远. 锂渣复合渣混凝土研究. 硕士学位论文, 重庆大学, 2008.
12 Shi N. Research on alkali-slag-lithium slag cement. Master's Thesis, Chongqing University, China, 2005 (in Chinese).
石宁. 碱-矿渣-锂渣胶凝材料研究. 硕士学位论文, 重庆大学, 2005.
13 He Y, Zhang Q L, Chen Q S, et al. Construction and Building Materials, 2021, 271, 121567.
14 Li J Z. Study on preparation and properties of white ultra high performance concrete. Master's Thesis, Nanchang University,China, 2019 (in Chinese).
李金臻. 白色超高性能混凝土的制备与性能研究. 硕士学位论文, 南昌大学, 2019.
15 He Y, Liu S H, Ning G, et al. Non-Metallic Mines, 2020, 43(5), 99 (in Chinese).
何燕, 刘数华, 宁炅, 等. 非金属矿, 2020, 43(5), 99.
16 Bi L P. Experimental study on influence of lithium slag admixtures on durability of concrete. Master's Thesis, East China Jiaotong University, China, 2017 (in Chinese).
毕丽苹. 锂渣掺和料对混凝土耐久性影响的试验研究. 硕士学位论文, 华东交通大学, 2017.
17 Liu Z, Wang J X, Jiang Q K, et al. Journal of Cleaner Production, 2019, 225, 1184.
18 Wang G Q. Study on crack resistance of high performance concrete with lithium-slag. Master's Thesis, Xinjiang Agricultural University, China, 2011 (in Chinese).
王国强. 锂渣高性能混凝土收缩与抗裂性能研究. 硕士学位论文, 新疆农业大学, 2011.
19 Wu F F. Study on hydration characteristics of complex binder containing lithium slag and properties of hardened concrete. Ph. D. Thesis, Xinjiang Agricultural University, China, 2016 (in Chinese).
吴福飞. 锂渣复合胶凝材料的水化特性及硬化混凝土的性能研究. 博士学位论文, 新疆农业大学, 2016.
20 Wu F F. The affect of environment and loads on complex lithium slag and slag concretc chloride ion penetration. Master's Thesis, Xinjiang Agricultural University, China, 2013 (in Chinese).
吴福飞. 环境及荷载对复掺锂渣钢渣混凝土氯离子渗透性能的影响. 硕士学位论文, 新疆农业大学, 2013.
21 Zhai M Y, Zhao J H, Wang D M, et al. Journal of Building Engineering, 2021, 39, 102287.
22 Yang H Y. Experimental study on the strength and the cracking resis-tance at early ages of high-performance concrete added with lithium slag and fly ash. Master's Thesis, Xinjiang Agricultural University, China, 2012 (in Chinese).
杨恒阳. 复掺锂渣、粉煤灰高性能混凝土强度及早期抗裂性能试验研究. 硕士学位论文, 新疆农业大学, 2012.
23 Guo J H. Test research on strength and early cracking of lithium slag concrete under different temperature and humidity. Master's Thesis, Xinjiang Agricultural University, China, 2015 (in Chinese).
郭江华. 不同温湿度下单掺锂渣混凝土的强度与早期抗裂试验研究. 硕士学位论文, 新疆农业大学, 2015.
24 Zhou H L. Experimental study on chloride-penetration resistance and early shrinkage in lithium slag composite fly ash of high performance concrete. Master's Thesis, Xinjiang Agricultural University, China, 2012 (in Chinese).
周海雷. 锂渣复合粉煤灰混凝土抗氯离子渗透及早期收缩性能的试验研究. 硕士学位论文, 新疆农业大学, 2012.
25 Wu F F, Shi K B, Dong S K, et al. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(4), 119 (in Chinese).
吴福飞, 侍克斌, 董双快, 等. 农业工程学报, 2016, 32(4), 119.
26 Guo Z S. The research of the experimental performance of C40 premixed lithium slag recycled aggregate concrete. Master's Thesis, Xinjiang University, China, 2017 (in Chinese).
郭泽思. C40预拌锂渣再生骨料混凝土试验性能研究. 硕士学位论文, 新疆大学, 2017.
27 Zhang S D. Forecasting of lithium-slag high-performance concrete strength and ring method test on its early-age anti-crack capability. Master's Thesis, Xinjiang Agricultural University, China, 2011 (in Chinese).
张善德. 锂渣高性能混凝土强度预测及圆环法早期抗裂性试验研究. 硕士学位论文, 新疆农业大学, 2011.
28 Xiao L X. Effect of lithium slag on rheological properties and hydration characteristics of cement-superplasticizer paste. Master's Thesis, Chongqing University, China, 2019 (in Chinese).
肖立鲜. 锂渣对水泥-减水剂浆体流变性能及水化特性的影响. 硕士学位论文, 重庆大学, 2019.
29 He Z, Li L, Du S. Construction and Building Materials, 2017, 147, 296.
30 Zhu Z K. Study on high strength high performance self compacting concrete containing lithium slag composite slag. Master's Thesis, Chongqing University, China, 2007 (in Chinese).
祝战奎. 锂渣复合渣高强高性能自密实混凝土研究. 硕士学位论文, 重庆大学, 2007.
31 Yang F. Study on properties and influencing factors of pervious concrete by solid waste materials. Master's Thesis, Southeast University, China, 2020 (in Chinese).
杨锋. 利用固废材料制备透水混凝土及其性能影响因素研究. 硕士学位论文, 东南大学, 2020.
32 Zhang Y B. Experimental study on durability of recycled concrete with lithium slag under ASR-freeze-thaw. Master's Thesis, Xinjiang University, China, 2020 (in Chinese).
张亚斌. ASR-冻融复合作用下掺锂渣再生混凝土耐久性试验研究. 硕士学位论文, 新疆大学, 2020.
33 Qi L, Shaowen H, Yuxuan Z, et al. Earth and Environmental Science, 2017, 61(1), 12151.
34 Luo Q, Wen Y, Huang S, et al. In: International Conference on Civil, Architecture and Environmental Engineering. Taibei, 2016, pp. 611.
35 Chen X X, Cao H L, Weng L Q, et al. Journal of Wuhan University of Technology, 2014, 36(3), 18 (in Chinese).
陈晓星, 曹海琳, 翁履谦, 等. 武汉理工大学学报, 2014, 36(3), 18.
36 Xu R F, Huang S W, Luo Q, et al. Non-Metallic Mines, 2018, 41(1), 27 (in Chinese).
徐瑞锋, 黄少文, 罗琦, 等. 非金属矿, 2018, 41(1), 27.
37 Tan H, Li M, He X, et al. Journal of Cleaner Production, 2020, 250, 119528.
38 Xi H. The effect of microwave-activated lithium slag on the coagulation performance of sulphoaluminate cement concrete. Master's Thesis, Nanjing University of Science and Technology, China, 2014 (in Chinese).
奚浩. 微波激活锂渣对硫铝酸盐水泥促凝效果的影响. 硕士学位论文, 南京理工大学, 2014.
39 He Y, Zhang Q L, Chen Q S, et al. Construction and Building Materials, 2021, 271, 121567.
40 Bai X P, Chu Y J, Yao Z Q, et al. Journal of Suzhou University of Science and Technology (Natural Science Edition), 2021, 38(2), 44 (in Chinese).
白雪鹏, 储宇吉, 姚泽群, 等. 苏州科技大学学报(自然科学版), 2021, 38(2), 44.
41 He Y, Liu S H, Hooton R D, et al. Construction and Building Materials, 2022, 318, 125757.
42 Zhang T, Ma B, Tan H, et al. Journal of Environmental Management, 2020, 276, 111274.
43 Zhang T. TIPA promotes the dissolution mechanism of aluminum phase and its effect on the mechanism of hydration and chloride ion binding. Master's Thesis, Wuhan University of Technology, China, 2019 (in Chinese).
张挺. TIPA的铝相促溶机理及其对水化及氯离子固化的影响机制. 硕士学位论文, 武汉理工大学, 2019.
44 Su D X. Study of repair mortar containing titanium slag composite slag. Master's Thesis, Chongqing University, China, 2008 (in Chinese).
苏都喜. 钛渣复合渣修补砂浆研究. 硕士学位论文, 重庆大学, 2008.
45 Ceng Q L. Research on white composite portland cement using lithium slag from lithium mica by chlorine salt autoclaving technology. Master's Thesis, Nanchang University, China, 2014 (in Chinese).
曾庆玲. 氯盐法锂云母提锂渣复合白色硅酸盐水泥的研究. 硕士学位论文, 南昌大学, 2014.
46 Zhang L. Study on performance of alkali-activated waste residue compo-sites (AAW) concrete. Ph. D. Thesis, Chongqing University, China, 2006 (in Chinese).
张兰芳. 碱激发复合渣体(AAW)混凝土的性能研究. 博士学位论文, 重庆大学, 2006.
47 He Y, Chen Q S, Qi C C, et al. Journal of Environmental Management, 2019, 248, 109282.
48 Zhang Z W, Ceng L, Jiang J S. Jiangxi Jiancai, 2021(6), 9 (in Chinese).
张志伟, 曾亮, 姜建松. 江西建材, 2021(6), 9.
49 Luo Q, Wang Y, Hong S, et al. Construction and Building Materials, 2021, 273, 121723.
50 Ali Shah S F, Chen B, Ahmad M R, et al. Journal of Cleaner Production, 2021, 291, 125241.
51 Wang B Y, Li L, Li J, et al. Chemical Journal of Chinese Universities, 2021, 42(1), 40 (in Chinese).
王彬宇, 李莉, 李菁, 等. 高等学校化学学报, 2021, 42(1), 40.
52 Chen D, Hu X, Shi L, et al. Applied Clay Science, 2012, 59-60, 148.
53 Wang B, Li J, Zhou X, et al. Inorganic Chemistry Frontiers, 2022, 9(3), 468.
54 Hu X, Zhuang Q, Chen D, et al. Journal of Chemical Engineering of Chinese Universities, 2013, 27(4), 708 (in Chinese).
胡昕, 庄强, 陈丹, 等. 高校化学工程学报, 2013, 27(4), 708.
55 Lin G, Zhuang Q, Cui Q, et al. Chinese Journal of Chemical Engineering, 2015, 23(11), 1768.
56 Xing P, Wang C, Zeng L, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(10), 9498.
57 Jin P, Li Z S, Xu D F. Sichuan Environment, 1995(4), 1 (in Chinese)
金鹏, 李正山, 徐德芳. 四川环境, 1995(4), 1.
58 Ceng C L. Study on preparing lightweight ceramsite using leaching residual slag of lepidolite ore. Master's Thesis, Nanchang University, China, 2012 (in Chinese).
曾传林. 利用氯化法锂云母提锂渣烧制轻质陶粒的研究. 硕士学位论文, 南昌大学, 2012.
59 Dong B Q, Luo X L, Tian K G, et al. Materials Reports, 2021, 35(15), 15011 (in Chinese).
董必钦, 罗小龙, 田凯歌, 等. 材料导报, 2021, 35(15), 15011.
60 Gao W, Jian S, Li X, et al. Journal of Cleaner Production, 2022, 348, 131361.
61 Dong S K, Zhu X P, Wu F F, et al. Journal of Water Resources and Water Engineering, 2015, 26(3), 100 (in Chinese).
董双快, 朱新萍, 吴福飞, 等. 水资源与水工程学报, 2015, 26(3), 100.
62 Dong S K, Zhu X P, Wu F F, et al. Journal of Xinjiang Agricultural University, 2015, 38(2), 163 (in Chinese).
董双快, 朱新萍, 吴福飞, 等. 新疆农业大学学报, 2015, 38(2), 163.
63 Dong S K, Huang C P, Gui Y, et al. Fly Ash Comprehensive Utilization, 2014(1), 15 (in Chinese).
董双快, 黄春萍, 桂洋, 等. 粉煤灰综合利用, 2014(1), 15.
64 Han G, Gu D, Lin G, et al. Hydrometallurgy, 2018, 177, 109.
[1] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[2] 郑超, 朱本谦, 陈清蓉, 杨泽波, 刘勇. 基于水泥熟料与矿物掺合料制备新胶凝材料体系[J]. 材料导报, 2022, 36(Z1): 21100177-3.
[3] 孟旭, 水中和, 费洗非. 矿物掺合料对水泥制品表观性能的影响[J]. 材料导报, 2022, 36(Z1): 22040176-5.
[4] 骆燕苏, 李凯, 王驰, 王飞, 宋辛, 包加成, 宁平, 孙鑫. 矿浆法同时脱硫脱硝的研究进展与展望[J]. 材料导报, 2022, 36(9): 20080316-7.
[5] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[6] 王凯, 陈繁育, 常洪雷, 左志武, 刘健. 双掺矿物添加剂对水泥基材料自修复性能的影响[J]. 材料导报, 2022, 36(5): 20120065-7.
[7] 徐海燕, 杨雪雷, 王爱国, 朱颖灿, 刘开伟, 黄濛, 王星尧. 地质聚合物基防护涂料及其性能提升技术的研究进展[J]. 材料导报, 2022, 36(19): 21110045-7.
[8] 李崇智, 孙浩, 叶国林, 张艺劼. 酸化拟薄水铝石改性镍钢渣复合掺合料的效果研究[J]. 材料导报, 2021, 35(z2): 460-464.
[9] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[10] 吴春丽, 陈哲, 谢红波, 麦俊明, 苏青. 不锈钢渣的资源处置研究进展[J]. 材料导报, 2021, 35(Z1): 462-466.
[11] 李刊, 魏智强, 乔宏霞, 路承功, 郭健, 乔国斌. 四大类外掺材料对聚合物改性水泥基材料性能影响的研究进展[J]. 材料导报, 2021, 35(Z1): 654-661.
[12] 王学铭, 纪妍妍, 郑春明. 含氟体系中无模板剂合成SSZ-13分子筛[J]. 材料导报, 2021, 35(4): 4038-4041.
[13] 刘进, 呙润华, 张增起. 磷酸镁水泥性能的研究进展[J]. 材料导报, 2021, 35(23): 23068-23075.
[14] 李小明, 阮锦榜, 臧旭媛, 张馨艺, 贺芸, 张连增, 邢相栋. 晶体硅金刚石线切割废料资源化利用研究进展[J]. 材料导报, 2021, 35(23): 23229-23234.
[15] 储洪强, 王婷婷, 张宇衡, 丁天云, 梁云超, 朱正宇. 氯盐-硫酸盐共存环境中杂散电流作用下提升砂浆中氯离子结合性能的研究[J]. 材料导报, 2021, 35(18): 18069-18075.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed