Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23080167-9    https://doi.org/10.11896/cldb.23080167
  无机非金属及其复合材料 |
碳基电极材料的改性方法与应用进展
师楷雁1,2, 白杰1,2, 孙炜岩1,2,*
1 内蒙古工业大学化工学院,呼和浩特 010051
2 内蒙古工业催化重点实验室,呼和浩特 010051
Advances in Modification Methods and Applications of Carbon-based Electrode Materials
SHI Kaiyan1,2, BAI Jie1,2, SUN Weiyan1,2,*
1 School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 Inner Mongolia Key Laboratory of Industrial Catalysis, Hohhot 010051, China
下载:  全 文 ( PDF ) ( 4790KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳基材料具有比表面积大、导电性高、化学稳定性好和形貌易调控的优点,被广泛应用于各类电化学反应和电化学能源存储领域中。本文总结了碳基电极材料在电化学领域中的最新研究进展。首先介绍了如何利用调控孔隙结构、掺杂稀土元素、掺杂非金属元素N/S和与金属氧化物等材料复合的改性方法,实现碳基电极材料的双功能化。其次概述了碳基电极材料在超级电容器和电催化领域中用于能源存储及电化学性能优化的研究现状。最后展望了碳基电极材料在电化学领域中面临的挑战和未来的探索方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
师楷雁
白杰
孙炜岩
关键词:  碳基材料  改性方法  超级电容器  电催化  电化学储能    
Abstract: Carbon-based materials are widely used in various types of electrochemical reactions and electrochemical energy storage due to their advantages of large specific surface area, high electrical conductivity, good chemical stability, and ease of morphological regulation. This review summarizes the latest research progress of carbon-based electrode materials in the field of electrochemistry. It first describes how to modify carbon-based materials using methods such as pore structure modulation, rare earth elements doping, non-metallic elements(N/S) doping, and hybridization with metal oxides to realize bifunctionalization. It then outlines the practical applications of carbon-based electrode materials for solving energy storage problems and optimizing electrochemical performance in the fields of supercapacitors and electrocatalysis. Finally it gives a prospective discussion about the challenges and future trends of the research of carbon-based electrode materials in electrochemistry.
Key words:  carbon-based material    modification method    supercapacitor    electrocatalysis    electrochemical energy storage
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TQ150  
基金资助: 国家自然科学基金(52163029)
通讯作者:  *孙炜岩,2020年获内蒙古工业大学博士学位,现为内蒙古工业大学化工学院副教授、硕士研究生导师。目前主要从事碳纤维基电极材料的开发及应用研究,发表SCI论文数篇,授权发明专利3项,主持国家自然科学基金科研项目。sunweiyan@imut.edu.cn   
作者简介:  师楷雁,2022年毕业于河套学院,获得理学学士学位。现为内蒙古工业大学化工学院硕士研究生,在孙炜岩副教授的指导下进行研究。目前主要研究领域为碳基电极材料的制备及在超级电容器领域的应用。
白杰,2008年获吉林大学博士学位,现为内蒙古工业大学化工学院教授、博士研究生导师。目前主要从事碳纤维基纳米复合催化剂的制备与催化性能研究、分子筛基复合催化剂的制备研究、一维功能纳米材料的制备与性能研究等,先后公开发表研究论文40余篇,包括Journal of Catalysis、Inorganic Chemistry Frontiers、Organic Chemistry Frontiers、Che-mical Engineering Journal等期刊。
引用本文:    
师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
SHI Kaiyan, BAI Jie, SUN Weiyan. Advances in Modification Methods and Applications of Carbon-based Electrode Materials. Materials Reports, 2024, 38(22): 23080167-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080167  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23080167
1 Choudhary N, Li C, Moore J, et al. Advanced Materials, 2016, 29(21), 1605336.
2 Qi P, Chen A Y. Chinese Journal of Power Sources, 2020, 44(8), 1235(in Chinese).
祁鹏, 陈爱英. 电源技术, 2020, 44(8), 1235.
3 Jia Y, Yao X. Accounts of Chemical Research, 2023, 56(8), 948.
4 Wang X B, Zhao Q S, Cheng Z N, et al. CIESC Journal, 2020, 71(6), 2660(in Chinese).
王晓波, 赵青山, 程智年, 等. 化工学报, 2020, 71(6), 2660.
5 Li Z, Li B, Yu C, et al. Advanced Science, 2023, 10(7), 2206605.
6 Chen R, Tang H, He P, et al. Advanced Functional Materials, 2022, 33(8), 2212078.
7 Huang J, Liu C, Jin Y, et al. Chemical Engineering Journal, 2023, 461, 141930.
8 Yang Y, Chen D, Han W, et al. Carbon, 2023, 205, 1.
9 Liu W, Qiao F, Yang J, et al. Nano Research, 2023, 16(7), 10401.
10 Lu Y, Shi H J, Su Y F, et al. Progress in Chemistry, 2021, 33(9), 1598(in Chinese).
卢赟, 史宏娟, 苏岳锋, 等. 化学进展, 2021, 33(9), 1598.
11 Chen K F, Xun D F. Scientia Sinica(Technologica), 2019, 49(2), 175(in Chinese).
陈昆峰, 薛冬峰. 中国科学:技术科学, 2019, 49(2), 175.
12 Hu J L, Xue D F. Chinese Journal of Applied Chemistry, 2020, 37(3), 245(in Chinese).
胡家乐, 薛冬峰. 应用化学, 2020, 37(3), 245.
13 Jeyaranjan A, Sakthivel T S, Neal C J, et al. Carbon, 2019, 151, 192.
14 He Y, Zhou W, Xu J. ChemSusChem, 2022, 15(12), 202200469.
15 Luo Y, Yang T, Zhao Q, et al. Journal of Alloys and Compounds, 2017, 729, 64.
16 Paul A, Ghosh S, Kolya H, et al. Journal of Energy Storage, 2022, 55, 105526.
17 Dezfuli A S, Ganjali M R, Naderi H R. Applied Surface Science, 2017, 402, 245.
18 Shen C H, Chuang C H, Gu Y J, et al. ACS Applied Materials & Interfaces, 2021, 13(14), 16418.
19 Luo R, Wang R, Meng Z, et al. Advanced Composites and Hybrid Materials, 2023, 6(3), 105.
20 Morshed M, Wang J, Gao M, et al. Electrochimica Acta, 2021, 370, 137714.
21 Wang W, Mi Y, Kang Y, et al. Journal of Power Sources, 2020, 472, 228451.
22 Naderi H R, Ganjali M R, Dezfuli A S, et al. RSC Advances, 2016, 6(56), 51211.
23 Paravannoor A, Augustine C A, Ponpandian N. Journal of Rare Earths, 2020, 38(6), 625.
24 Dai H, Xu Y, Han Y, et al. ACS Applied Materials & Interfaces, 2023, 15(24), 29170.
25 Zheng Y, Chen K, Jiang K, et al. Journal of Energy Storage, 2022, 56, 105995.
26 Kim J G, Kim H C, Kim N D, et al. Composites Part B: Engineering, 2020, 186, 107825.
27 Lu H, Yang C, Chen J, et al. Small, 2020, 16(17), 1906584.
28 Zhao J, Gong J W, Li Y J, et al. Acta Chimica Sinica, 2018, 76(2), 107(in Chinese).
赵婧, 龚俊伟, 李一举, 等. 化学学报, 2018, 76(2), 107.
29 Li X, Zhao Y, Bai Y, et al. Electrochimica Acta, 2017, 230, 445.
30 Liu X, Sheng G, Zhong M, et al. Materials & Design, 2018, 141, 220.
31 Liu X, Chen S, Xiong Z, et al. Progress in Materials Science, 2022, 130, 100978.
32 Moghadam M T T, Seifi M, Jamali F, et al. Surfaces and Interfaces, 2022, 32, 102134.
33 Shinde P A, Seo Y, Ray C, et al. Electrochimica Acta, 2019, 308, 231.
34 Zhou J S. Preparation of carbon-based materials by solvothermal method and study of supercapacitor performance. Ph.D. Thesis, Yanshan University, 2018(in Chinese).
周军双. 溶剂热法制备碳基材料及超级电容器性能的研究. 博士学位论文, 燕山大学, 2018.
35 Yue Q, Wang S D, Xu F, et al. Materials Reports, 2021, 35(S1), 594(in Chinese).
岳青, 王绍德, 徐飞, 等. 材料导报, 2021, 35(S1), 594.
36 Tanwar V, Barik R, Ingole P P. ACS Applied Energy Materials, 2022, 5(2), 1767.
37 Sun W, Li C, Bai J, et al. Energy & Fuels, 2021, 35(14), 11572.
38 Lin Z, Goikolea E, Balducci A, et al. Materials Today, 2018, 21(4), 419.
39 Qian Y C, Yang X X, Zhang J J, et al. Journal of Donghua University(Natural Science), 2022, 48(6), 1(in Chinese).
钱宇宸, 杨晓晓, 张晶晶, 等. 东华大学学报(自然科学版), 2022, 48(6), 1.
40 Ye J F. Chemical Engineering & Equipment, 2020(10), 23(in Chinese).
叶进发. 化学工程与装备, 2020(10), 23.
41 Gao L, Wang Y, Liu Y, et al. Colloids and Surfaces A, 2023, 663, 131056.
42 Debendra A, Ishwor P, Bipeen D, et al. Carbon, 2023, 201, 12.
43 Chen H Y, Deng B J, Sun Y, et al. Chemical Engineering & Equipment, 2022(1), 191(in Chinese).
陈浩宇, 邓兵杰, 孙洋, 等. 化学工程与装备, 2022(1), 191.
44 Kim J, Park C, Park H, et al. Energy, 2022, 258, 124877.
45 Wang H, Hu C W, Wang H J, et al. Materials Reports, 2023, 37(6), 187(in Chinese).
王赫, 胡程文, 王洪杰, 等. 材料导报, 2023, 37(6), 187.
46 Fan B, Guo Y G, Wan L J. Progress in Chemistry, 2010, 22(5), 852(in Chinese).
樊博, 郭玉国, 万立骏. 化学进展, 2010, 22(5), 852.
47 Zhao Y, Liang J, Wang C, et al. Advanced Energy Materials, 2018, 8(10), 1702524.
48 Sun J, Ge Q, Guo L, et al. International Journal of Hydrogen Energy, 2020, 45(7), 4035.
49 Xie X Q, Liu J, Gu C, et al. Journal of Energy Chemistry, 2022, 64, 503.
50 He H, Lei Y, Liu S, et al. Journal of Colloid and Interface Science, 2023, 630, 140.
51 Zou J Z, Zheng M H, Wu H L, et al. Journal of Energy Storage, 2023, 70, 107950.
52 Wu L, Peng B, Zhou J, et al. Materials Reports, 2020, 34(23), 23009(in Chinese).
吴雷, 彭犇, 周军, 等. 材料导报, 2020, 34(23), 23009.
[1] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[2] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[3] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[4] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[5] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[6] 贾飞宏, 卫学玲, 包维维, 邹祥宇. MoS2/Ni3S2/NF双功能电催化剂用于高效全水解[J]. 材料导报, 2024, 38(4): 22040365-7.
[7] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[8] 刘睿琦, 孙善富, 程鹏飞, 王莹麟, 郝熙冬. 光/电催化废塑料升级再造高附加值化学品研究进展[J]. 材料导报, 2024, 38(20): 23060226-7.
[9] 刘向阳, 王议, 夏爽, 刘中清. 镍铁双氢氧化物的响应曲面法优化生长和电催化析氧性能研究[J]. 材料导报, 2024, 38(16): 23040152-5.
[10] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[11] 张华, 马帅帅, 张甜, 罗毅, 吴文洁, 任晓辉, 刘涛, 倪红卫. 基于高磷铁矿制备Fe-P合金催化剂用于高效全解水反应[J]. 材料导报, 2024, 38(15): 23050039-5.
[12] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[13] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[14] 盛雄, 李邦兴, 陆顺, 陆文强, 李晓锋, 康帅. 二维材料用于电化学法制备过氧化氢的研究进展[J]. 材料导报, 2024, 38(11): 22120169-13.
[15] 黄顺元, 刘律飞, 顾韵洁, 葛帅辰, 李静莎. 泡沫镍负载CuO纳米花的构筑及电化学硝酸根还原制氨的性能[J]. 材料导报, 2024, 38(10): 23010042-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed