Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23090025-12    https://doi.org/10.11896/cldb.23090025
  无机非金属及其复合材料 |
基于事故容错燃料的高燃耗组件研究进展
付浩1, 彭振驯2, 廖业宏2, 薛佳祥2, 沈朝3, 周张健4,*
1 生态环境部核与辐射安全中心,北京 100082
2 中广核研究院有限公司,广东 深圳 518000
3 上海交通大学材料科学与工程学院,上海 200240
4 北京科技大学材料科学与工程学院,北京 100083
A Complete Review on the Accident Tolerant Fuel for the High Burnup Assembly
FU Hao1, PENG Zhenxun2, LIAO Yehong2, XUE Jiaxiang2, SHEN Zhao3, ZHOU Zhangjian4,*
1 Nuclear and Radiation Safety Center, Beijing 100082, China
2 China Nuclear Power Technology Research Institute, Shenzhen 518000, Guangdong, China
3 School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
4 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 7449KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对核电高经济性和高安全性的目标,高燃耗(大于62 GWd/MTU)成为核燃料的发展趋势,然而,燃耗加深势必会导致芯块和包壳性能衰退甚至失效,引发安全隐患。本文首先回顾和梳理高燃耗状态传统UO2芯块-Zr合金包壳核燃料系统所面临的挑战,如芯块边缘高燃耗结构(HBS)形成-迅速扩展、裂变气体释放份额增大、燃料棒内压增大、包壳腐蚀和吸氢量加剧以及失水事故(LOCA)工况芯块碎裂-迁移-重置现象等,并以相关问题为切入点厘清关键对策。然后,归纳总结现阶段核工业界近期型事故容错燃料(ATF)方案研究进展和成果,重点阐述主流Cr涂层锆合金包壳和大晶粒UO2芯块ATF候选材料的关键服役性能,包括裂变气体释放、芯块-包壳接触压力、包壳水侧腐蚀及高温蒸汽氧化-淬火行为等。同时,对比分析Cr涂层锆合金包壳+大晶粒UO2芯块相较于传统核燃料系统服役优势,尤其是高燃耗状态,研究表明近期型ATF方案在高燃耗项目中极具应用潜力。本文概述的内容有助于加深核工业工作者对高燃耗项目的理解,同时为我国自主研发ATF和高燃耗项目相结合提供参考,助力提升核电经济性、安全性与可靠性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付浩
彭振驯
廖业宏
薛佳祥
沈朝
周张健
关键词:  高燃耗  燃料组件  事故容错燃料  Cr涂层锆合金包壳  大晶粒UO2芯块    
Abstract: In the pursuit of the dual objectives of heightened economic efficiency and enhanced safety, the trend of achieving high burnup levels, exceeding 62 GWd/MTU, has become a prominent focal point in nuclear fuel development. However, it is imperative to recognize that increasing burnup levels inevitably introduce challenges, leading to the degradation and potential failure of both fuel pellets and cladding materials, thus giving rise to safety concerns. This paper initiates with a comprehensive examination and delineation of the challenges confronted by conventional UO2 fuel pellet and Zr alloy cladding when operating under high burnup conditions. For instance, the formation and rapid propagation of high burnup structures at the periphery of pellets, increasing proportion of fission gas release, heightened internal pressures within fuel rods, enhancement of corrosion associated with hydrogen pickup of claddings. In addition, the fragmentation, relocation, and dispersal of fuel pellets during the loss of coolant accident scenarios. This paper elucidates the critical strategies employed to address the above challenges effectively. Subsequently, the article consolidates and summarizes the recent developments and accomplishments within the nuclear industry pertaining to accident tolerant fuel. It places particular emphasis on the critical in-service performance of Cr-coated Zr alloy claddings and large-grained UO2 fuel pellet, including fission gas release, pellet and cladding mechanical interactions, corrosion of cladding in aqueous environments, and high-temperature steam oxidation and quenching behavior. Simultaneously, the paper conducts a comparative analysis between the Cr-coated Zr alloy cladding and large-grained UO2 fuel pellets ATF project with the traditional nuclear fuel system. Particular attention is given to operational advantages, particularly in the context of high burnup conditions. The research findings strongly suggest the recent ATF projects hold significant promise for application in high burnup projects. This review aims to deepen nuclear industry stakeholders' understanding of high burnup initiatives while offering insightful guidance for integrating domestically developed ATF materials into high burnup applications, thus contributing to the advancement of nuclear power safety and economic viability.
Key words:  high burnup    fuel assembly    accident tolerant fuel    Cr-coated Zr alloy claddings    large-grained UO2 pellets
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  TL352.1  
通讯作者:  *周张健,北京科技大学材料科学与工程学院教授、博士研究生导师。1996年于中国地质大学(北京)矿物专业获硕士学位,2007年于北京科技大学材料专业获博士学位。担任国际梯度材料顾问委员会(IACFGM)委员,Journal of Nuclear Materials期刊编辑顾问委员,《材料导报》编委。主要从事能源系统等极端环境用先进材料研究,包括ODS钢、难熔金属、功能梯度材料等,以第一作者或通信作者发表论文160余篇。zhouzhj@mater.ustb.edu.cn   
作者简介:  付浩,硕士,2012年毕业于中国原子能科学研究院。现为生态环境部核与辐射安全中心高级工程师,主要负责核动力厂反应堆设计和事故分析安全审评工作。
引用本文:    
付浩, 彭振驯, 廖业宏, 薛佳祥, 沈朝, 周张健. 基于事故容错燃料的高燃耗组件研究进展[J]. 材料导报, 2024, 38(22): 23090025-12.
FU Hao, PENG Zhenxun, LIAO Yehong, XUE Jiaxiang, SHEN Zhao, ZHOU Zhangjian. A Complete Review on the Accident Tolerant Fuel for the High Burnup Assembly. Materials Reports, 2024, 38(22): 23090025-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090025  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23090025
1 Smith F, Daum R. Alternative licensing approaches for higher burnup fuel-a scoping study on deterministic and risk-informed alternatives supporting fuel discharge burnup extension, Electric Power Research Institute, USA, 2020, pp. 2.
2 Pimentel F, Smith F. The economic benefits and challenges with utilizing increased enrichment and fuel burnup for light-water-reactors, Nuclear Energy Institute, USA, 2019, pp. 2.
3 Wiesenack W. Nuclear Engineering and Dseign, 1997, 172(1), 83.
4 Rondinella V V, Wiss T. Materials Today, 2010, 13(12), 24.
5 Xiao H, Long C, Chen H. Journal of Nuclear Materials, 2021, 556, 153151.
6 Michelle B, Alice C, James C, et al. Interpretation of research on fuel fragmentation, reclocation, and dispersal at high burnup, United States Nuclear Regulatory Commission, 2021, pp.24.
7 Heinz S, Wolfgang W, Veronique G, et al. Report on fuel fragmentation, relocation and dispersal, Nuclear Energy Agency, USA, 2016, pp.23.
8 Bischoff J, Brachet J C, Bragg-Sitton S M, et al. State-of-the-art report on light water reactor accident-tolerant fuels, Nuclear Energy Agency, Organisation for Economic Co-operation and Development, 2018, pp.115.
9 Brachet J C, Idarraga-Trujillo I, Flem M L, et al. Journal of Nuclear Materials, 2019, 517, 268.
10 Brachet J C, Rouesne E, Ribis J, et al. Corrosion Science, 2020, 167, 108537.
11 Brachet J C, Le Saux M, Bischoff J, et al. Journal of Nuclear Materials, 2020, 533, 152106.
12 Brian R M. Draft safety evaluation for global nuclear fuel proposed amendment 51 to topical rport, NEDE-24011-P-A-29, general electric standard application for reactor fuel, Global Nuclear Fuel, United States Nuclear Regulatory Commission, 2020, pp.1.
13 Walter L K, et al. Incremental extension of burnup limit for westinghouse and combustion engineering fuel designs, United States Nuclear Regulatory Commission, 2024, pp.1.
14 United States Nuclear Regulatory Commission. In: Rulemaking Plan on Use of Increased Enrichment of Conventional and Accident Tolerant Fuel Designs for Light-Water Reactors. United States, 2022, pp.1.
15 Nuclear Regulatory Commission Staff Organization. Project plan to prepare the U.S. Nuclear Regulation Commision for efficient and effective licensing of accident tolernat fuels, United States Nuclear Regulatory Commission, 2021, pp.35.
16 Yan J, Liao Y, Peng Z, et al. Surface Technology, 2023, 52(12), 206(in Chinese).
严俊, 廖业宏, 彭振驯, 等. 表面技术, 2023, 52(12), 206.
17 Duan Z G, Chen P, Zhou Y, et al. Nuclear Techniques, 2022, 45(3), 3(in Chinese).
段振刚, 陈平, 周毅, 等. 核技术, 2022, 45(3), 3.
18 Pang H, Xin Y, Yue H F, et al. Materials Reports, 2022, 36(4), 5(in Chinese).
庞华, 辛勇, 岳慧芳, 等. 材料导报, 2022, 36(4), 5.
19 Ikatsu N, Itagaki N, Ohira K, et al. In: Proceedings of the Technical Committee. Sweden, 1998, pp.177.
20 Noirot J, Desgranges L, Lamontagne J. Journal of Nuclear Materials, 2008, 372, 318.
21 Rest J, Cooper M W D, Spino J, et al. Journal of Nuclear Materials, 2019, 513, 310.
22 Wiesenack W. Nuclear Engineering and Dseign, 1997, 172, 83.
23 Avera. U. S. EPR Final safety analysis report, Revision 4, pp.4.2-1.
24 Yilmazbayhan A. Microstructural basis of uniform corrosion in zirconium alloys. Ph. D. Thesis, The Pennsylvania State University, USA, 2004.
25 Motta A T, Couet A, Comstock R J. Annual Review of Materials Research, 2015, 45, 311.
26 Couet A, Motta A T, Comstock R J. Journal of Nuclear Materials, 2014, 451, 1.
27 United States Nuclear Regulatory Commission. Determining post quench ductility, United States Nuclear Regulatory Commission, 2014, pp.A-14.
28 United States Nuclear Regulatory Commission. Expanded Post Quench Ductility (PQD) Empirical Database, 2009, pp.1.
29 Bales M, Chung A, Corson A, et al. Interpretation of research on fuel fragmentation, relocation, and dispersal at high burnup, United States Nuclear Regulatory Commission, 2021, pp.2.
30 Exelon Generation Company (USA). Supplement #3 to license amendment request to utilize accident, United States Nuclear Regulatory Commission, 2019, pp.1.
31 Dumerval M, Houmaire Q, Brachet J C, et al. In:Conference Record of the Topfuel 2018. Prague, 2018.
32 Brachet J C, Saux M L, Lomello F, et al. In:Conference Record of the Topfuel 2016. Boise, 2016.
33 Wang Z W, Yan J, Peng Z X, et al. Nuclear Power Engineering, 2023, 44(2), 122(in Chinese).
王占伟, 严俊, 彭振驯, 等. 核动力工程, 2023, 44(2), 122.
34 Backman K, Hallstaius L. In:IAEA Technical Meeting on Advanced Fuel Pellet Materials and Fuel Rod Designs for Water Cooled Reactors. Vienna, 2009.
35 Che Y, Pastore G, Hales J, et al. Nuclear Engineering and Design, 2018, 337, 271.
[1] 孙永菊, 陈建伟, 梅华平, 刘静, 李桃生, 吴庆生. 氮化铀(UN)粉末合成工艺分析[J]. 材料导报, 2021, 35(19): 19036-19040.
[2] 王锋, 孙源楠, 苏兴康. 有机工质反应堆燃料组件物理计算及堆芯设计[J]. 材料导报, 2021, 35(18): 18195-18199.
[3] 程亮, 张鹏程. 典型事故容错轻水堆燃料包壳候选材料SiCf/SiC复合材料和Mo合金的研究进展[J]. 材料导报, 2018, 32(13): 2161-2166.
[4] 刘俊凯, 张新虎, 恽迪. 事故容错燃料包壳候选材料的研究现状及展望[J]. 《材料导报》期刊社, 2018, 32(11): 1757-1778.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed