Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23090053-7    https://doi.org/10.11896/cldb.23090053
  无机非金属及其复合材料 |
粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响
季节1,2,3,4,*, 张梓源1,2,3,4, 文龙5, 尤鹏超1,2,3,4, 马童1,2,3,4, 黄昶惟6
1 北京建筑大学土木与交通工程学院,北京 100044
2 北京建筑大学北京节能减排与城乡可持续发展省部共建协同创新中心,北京 100044
3 北京建筑大学北京市城市交通基础设施建设工程技术研究中心,北京 100044
4 北京建筑大学住房城乡建设部建筑垃圾资源化工程技术创新中心,北京 100044
5 清华大学土木工程系,北京 100084
6 北京城建集团国际事业部,北京 100088
Effect of Filler to Asphalt Ratio on Low-temperature Performance of Direct Coal Liquefaction Residue Composite Modified Asphalt Mortar and Mixture
JI Jie1,2,3,4,*, ZHANG Ziyuan1,2,3,4, WEN Long5, YOU Pengchao1,2,3,4, MA Tong1,2,3,4, HUANG Changwei6
1 School of Civil Engineering and Transportation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
3 Beijing Urban Transportation Infrastructure Engineering Technology Research Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
4 Engineering Technology Innovation Center of Construction and Demolition Waste Recycling, Ministry of Housing and Urban-Rural Development, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
5 Civil Engineering Department, Tsinghua University, Beijing 100084, China
6 Overseas Sales Department, Beijing Urban Construction Group Co., Ltd., Beijing 100088, China
下载:  全 文 ( PDF ) ( 3152KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作旨在探究粉胶比对煤直接液化残渣(Direct coal liquefaction residue,DCLR)复合改性沥青胶浆及混合料低温性能的影响。设计了四种粉胶比(0.6、0.8、1.0、1.2)下三种沥青胶浆及混合料(SK-90沥青胶浆及混合料、DCLR改性沥青胶浆及混合料、DCLR复合改性沥青胶浆及混合料),采用弯曲蠕变劲度(BBR)试验、低温小梁试验、半圆弯曲(SCB)试验、接触角试验进行性能评价。试验结果表明:相比于DCLR改性沥青胶浆及混合料,DCLR复合改性沥青胶浆临界破坏温度显著降低,混合料破坏应变提升较大,基本上达到SK-90沥青胶浆及混合料的低温性能水平。综合各种试验结果,三种混合料粉胶比为1.0时的低温性能最优。尤其是DCLR复合改性沥青混合料在粉胶比为1.0时,表现出更好的低温应力松弛能力,较强的抗开裂能力与抗裂缝发展能力。但其受粉胶比变化敏感性较强,当粉胶比增加到1.2时,混合料低温抗开裂能力与抗裂缝发展能力显著降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
季节
张梓源
文龙
尤鹏超
马童
黄昶惟
关键词:  道路工程  煤直接液化残渣  粉胶比  沥青胶浆  沥青混合料  低温性能    
Abstract: The objective of this paper is to investigate the low-temperature performance of direct coal liquefaction residue(DCLR) composite modified asphalt mortar and mixtures with different filler to asphalt ratios. Evaluation of the performance of three types of asphalt mortar and mixtures(SK-90 asphalt mastics and mixtures, DCLR modified asphalt mastics and mixtures, DCLR composite modified asphalt mastics and mixtures) with four types of filler to asphalt ratio(0.6, 0.8, 1.0, 1.2) using the BBR test, the low-temperature trabecular beam test, the SCB test, and the contact angle test. The test results show that: DCLR composite modified asphalt mortar critical damage temperature is significantly reduced, the damage strain of the mixture is significantly improved, compared with the DCLR modified asphalt mortar and mixture, the low-temperature performance has been significantly improved, basically reaching the SK-90 asphalt mortar and mixture of the low-temperature performance level. Comprehensive results of various tests, three kinds of mixtures filler to asphalt ratio of 1.0 when the low-temperature performance is optimal. DCLR composite modified asphalt mixtures show better low-temperature stress relaxation ability, resistance to cracking ability and crack development ability is stronger. However, it is more sensitive to the change of filler to asphalt ratio and is not easy to resist the expansion of low-temperature cracks. When the filler to asphalt ratio is increased to 1.2, the low-temperature cracking resistance of the mixture and the crack development resistance is significantly reduced.
Key words:  road engineering    direct coal liquefaction residue    filler to asphalt ratio    asphalt mortar    asphalt mixture    low-temperature perfor-mance
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  U414  
基金资助: 国家自然科学基金(52078025);国家重点研发计划(2021YFB2601200);北京市属高等学校高水平科研创新团队建设支持计划项目(BPHR20220109);北京建筑大学研究生创新项目(PG2023043)
通讯作者:  *季节,北京建筑大学教授、博士研究生导师。目前主要研究领域为路基路面结构与材料、固体废弃物高效利用等。获国家科技进步二等奖1项、省部级科技奖励30余项,出版学术专著4部,发表学术论文150 余篇,授权发明专利50余项,主参编国家、行业、团体标准6部。jijie@bucea.edu.cn   
引用本文:    
季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
JI Jie, ZHANG Ziyuan, WEN Long, YOU Pengchao, MA Tong, HUANG Changwei. Effect of Filler to Asphalt Ratio on Low-temperature Performance of Direct Coal Liquefaction Residue Composite Modified Asphalt Mortar and Mixture. Materials Reports, 2024, 38(22): 23090053-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090053  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23090053
1 Luo W J, Lan X Z, Song YH, et al. Materials Reports, 2013, 27(11), 153(in Chinese).
罗万江, 兰新哲, 宋永辉, 等. 材料导报, 2013, 27(11), 153
2 Liu P F, Zang Y Q, Fang Y T. TGJournal of Fuel Chemistry and Technology, 2012, 40(6), 655(in Chinese).
刘朋飞, 张永奇, 房倚天. 燃料化学学报(中英文), 2012, 40(6), 655.
3 Ren Y G, Gu S Q, Xu Z Q, et al. Journal of Analytical and Applied Pyrolysis, 2022, 165, 105559.
4 Ji J, Wang Z, Li P F, et al. Journal of Cleaner Production, 2023, 395, 136273.
5 Zang Y J, Xue Y B, Liu Z M. Clean Coal Technology, 2021, 27(5), 60(in Chinese).
张雅婕, 薛永兵, 刘振民. 洁净煤技术, 2021, 27(5), 60.
6 Song Z Z, Sun M, Huang Y, et al. Chemical Industry and Engineering Progress, 2017, 36(9), 3273(in Chinese).
宋真真, 孙鸣, 黄晔, 等. 化工进展, 2017, 36(9), 3273.
7 Ji J, Shi Y F, Suo Z, et al. Journal of Traffic and Transportation Engineering, 2015, 15(4), 1(in Chinese).
季节, 石越峰, 索智, 等. 交通运输工程学报, 2015, 15(4), 1.
8 Zhao Y S. Study on the performances of DCLR modified asphalt and asphalt mortar. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2015(in Chinese).
赵永尚. 煤直接液化残渣改性沥青及其胶浆的性能研究. 硕士学位论文, 北京建筑大学, 2015.
9 Xu Y, Ji J, Suo Z, et al. Journal of Building Materials, 2016, 19(5), 939(in Chinese).
许鹰, 季节, 索智, 等. 建筑材料学报, 2016, 19(5), 939.
10 Ji J, Shi Y F, Suo Z, et al. Journal of Hefei University of Technology(Natural Science), 2016, 39(7), 955(in Chinese).
季节, 石越峰, 索智, 等. 合肥工业大学学报(自然科学版), 2016, 39(7), 955.
11 Ji J, Shi Y F, Suo Z, et al. Journal of Beijing University of Technology, 2015, 41(7), 1049(in Chinese).
季节, 石越峰, 索智, 等. 北京工业大学学报, 2015, 41(7), 1049.
12 Ji J, Suo Z, Shi Y F, et al. Journal of Highway and Transportation Research and Development, 2016, 33(5), 33(in Chinese).
季节, 索智, 石越峰, 等. 公路交通科技, 2016, 33(5), 33.
13 Ji J, Suo Z, Zhang R, et al. Construction and Building Materials, 2021, 295, 123545.
14 Ji J, Yuan Z K, Wei J M, et al. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(4), 166(in Chinese).
季节, 苑志凯, 魏建明, 等. 中国石油大学学报(自然科学版), 2019, 43(4), 166.
15 Ji J, Li H, Wang J N, et al. Journal of Fuel Chemistry and Technology, 2019, 47(8), 925(in Chinese).
季节, 李辉, 王佳妮, 等. 燃料化学学报, 2019, 47(8), 925.
16 Xu X Q. Study on compatibility between direct coal liquefaction residue and asphalt under single/composite compatibilization mode. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2022(in Chinese).
徐新强. 单一/复合增容方式下煤直接液化残渣与道路石油沥青相容性研究. 硕士学位论文, 北京建筑大学, 2022.
17 Ji J, Huang C W, Ma T, et al. China Journal of Highway and Transport, 2023, 36(6), 1(in Chinese).
季节, 黄昶惟, 马童, 等. 中国公路学报, 2023, 36(6), 1.
18 Espinosa L, Caro S, Wills J. Construction and Building Materials, 2020, 262, 120037.
19 Riara M, Tang P, Mo L, et al. Construction and Building Materials, 2018, 177, 388.
20 Xu Y L, Zhu H Z, Qing L, et al. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(8), 30. (in Chinese).
徐艳玲, 朱洪洲, 青亮, 等. 重庆交通大学学报(自然科学版), 2023, 42(8), 30.
21 Slebi-Acevedo J C, Lastra-González P, Castro-Fresno D, et al. Construction and Building Materials, 2020, 248(C), 118622.
22 Li Z N, Shen A Q, Guo Y C, et al. Journal of Building Materials, 2021, 24(1), 146(in Chinese).
李震南, 申爱琴, 郭寅川, 等. 建筑材料学报, 2021, 24(1), 146.
23 Airey D G. International Journal of Pavement Engineering, 2004, 5(3), 137.
24 Xie X B, Li M D Ling L Y, et al. Journal of Materials Science and Engineering, 2022, 40(3), 491(in Chinese).
谢祥兵, 李茂达, 梁林园, 等. 材料科学与工程学报, 2022, 40(3), 491.
25 Guo NS, Yu AK, Wang ZC, et al. Materials Reports, 2023, 37(17), 137(in Chinese).
郭乃胜, 于安康, 王志臣, 等. 材料导报, 2023, 37(17), 137.
26 Li C, Pan K, Wang L. Journal of Central South University(Science and Technology), 2021, 52(7), 2450(in Chinese).
李超, 潘科, 王岚. 中南大学学报(自然科学版), 2021, 52(7), 2450.
27 Liu K F, Liu C L, Li Q, et al. Materials, 2022, 15(20), 7223.
28 Li X J, Han S, Jia Z Q, et al. Journal of Guangxi University(Natural Science Edition), 2011, 36(1), 6(in Chinese).
李晓娟, 韩森, 贾志清, 等. 广西大学学报(自然科学版), 2011, 36(1), 6.
29 Saeid A S, Sina V, D. M E, et al. Construction and Building Materials, 2022, 359, 129275.
30 Sercan S, Mehmet E, Ekrem V G. Construction and Building Materials, 2021, 300, 124006.
31 Al-Qudsi A, Falchetto A C, Wang D, et al. Cold Regions Science and Technology, 2020, 169, 102916.
32 Meng Y J, Kong W K, Gou C L, et al. Journal of Road Engineering, 2023, 3(1), 87.
33 Lu D X, Bui Ha H, Mofreh S. Engineering Fracture Mechanics, 2021, 242, 107452.
34 Wang D. Research on application of direct coal liquefaction residue modified asphalt mixture in pavement engineering. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2018(in Chinese).
王迪. 煤直接液化残渣改性沥青混合料在道路工程中的应用技术研究. 硕士学位论文, 北京建筑大学, 2018.
35 Ji J, Xu X Q, Xu Y, et al. Journal of Fuel Chemistry and Technology, 2021, 49(8), 1095(in Chinese).
季节, 徐新强, 许鹰, 等. 燃料化学学报, 2021, 49(8), 1095.
36 Ji J, Shi Y F, Li P F, et al. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2015, 47(4), 511(in Chinese).
季节, 石越峰, 李鹏飞, 等. 西安建筑科技大学学报(自然科学版), 2015, 47(4), 511.
37 Ji J, Wang Z, Zhang R, et al. Construction and Building Materials, 2020, 257(4), 119489.
38 Yang L J, Long N Q, Wang L, et al. Journal of Building Materials, 2022, 25(12), 1313(in Chinese).
杨丽娟, 龙念泉, 王岚, 等. 建筑材料学报, 2022, 25(12), 1313.
39 Xu X Q, Tang S G, Yang J. Journal of Chang'an University(Natural Science Edition), 2020, 40(4), 14(in Chinese).
许新权, 唐胜刚, 杨军. 长安大学学报(自然科学版), 2020, 40(4), 14.
40 Ji J, Shi Y F, Suo Z, et al. Journal of Shenyang Jianzhu University(Natural Science), 2015, 31(6), 1041(in Chinese).
季节, 石越峰, 索智, 等. 沈阳建筑大学学报(自然科学版), 2015, 31(6), 1041.
41 Song WM, Wu H. Materials Reports, 2023, 37(16), 93(in Chinese).
宋卫民, 吴昊. 材料导报, 2023, 37(16), 93.
42 Li Z N, Shen A Q, Guo R C, et al. Journal of Building Materials, 2021, 24(1), 146(in Chinese).
李震南, 申爱琴, 郭寅川, 等. 建筑材料学报, 2021, 24(1), 146.
43 Xu T F. Research on regeneration method and performance of asphalt mixture with high rap content. Master's Thesis, Chongqing Jiaotong University, China, 2021(in Chinese).
徐腾飞. 高掺量旧料再生方法及其混合料性能研究. 硕士学位论文, 重庆交通大学, 2021.
44 Chen B Y S, Wang L, Zhang Q, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(2), 704(in Chinese).
陈白银霜, 王岚, 张琪, 等. 硅酸盐通报, 2022, 41(2), 704.
45 Zhao W H, Xie X B, Li G H, et al. Highway, 2021, 66(8), 304(in Chinese).
赵文辉, 谢祥兵, 李广慧, 等. 公路, 2021, 66(8), 304.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[4] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[5] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[6] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[7] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[8] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[9] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[10] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[11] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[12] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[13] 王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
[14] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
[15] 赵晓康, 张久鹏, 胡勤石, 裴建中, 程科, 张柳. 长余辉水性道面标线涂料的制备与路用性能[J]. 材料导报, 2024, 38(15): 23020088-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed