Effect of Filler to Asphalt Ratio on Low-temperature Performance of Direct Coal Liquefaction Residue Composite Modified Asphalt Mortar and Mixture
JI Jie1,2,3,4,*, ZHANG Ziyuan1,2,3,4, WEN Long5, YOU Pengchao1,2,3,4, MA Tong1,2,3,4, HUANG Changwei6
1 School of Civil Engineering and Transportation, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 2 Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 3 Beijing Urban Transportation Infrastructure Engineering Technology Research Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 4 Engineering Technology Innovation Center of Construction and Demolition Waste Recycling, Ministry of Housing and Urban-Rural Development, Beijing University of Civil Engineering and Architecture, Beijing 100044, China 5 Civil Engineering Department, Tsinghua University, Beijing 100084, China 6 Overseas Sales Department, Beijing Urban Construction Group Co., Ltd., Beijing 100088, China
Abstract: The objective of this paper is to investigate the low-temperature performance of direct coal liquefaction residue(DCLR) composite modified asphalt mortar and mixtures with different filler to asphalt ratios. Evaluation of the performance of three types of asphalt mortar and mixtures(SK-90 asphalt mastics and mixtures, DCLR modified asphalt mastics and mixtures, DCLR composite modified asphalt mastics and mixtures) with four types of filler to asphalt ratio(0.6, 0.8, 1.0, 1.2) using the BBR test, the low-temperature trabecular beam test, the SCB test, and the contact angle test. The test results show that: DCLR composite modified asphalt mortar critical damage temperature is significantly reduced, the damage strain of the mixture is significantly improved, compared with the DCLR modified asphalt mortar and mixture, the low-temperature performance has been significantly improved, basically reaching the SK-90 asphalt mortar and mixture of the low-temperature performance level. Comprehensive results of various tests, three kinds of mixtures filler to asphalt ratio of 1.0 when the low-temperature performance is optimal. DCLR composite modified asphalt mixtures show better low-temperature stress relaxation ability, resistance to cracking ability and crack development ability is stronger. However, it is more sensitive to the change of filler to asphalt ratio and is not easy to resist the expansion of low-temperature cracks. When the filler to asphalt ratio is increased to 1.2, the low-temperature cracking resistance of the mixture and the crack development resistance is significantly reduced.
季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
JI Jie, ZHANG Ziyuan, WEN Long, YOU Pengchao, MA Tong, HUANG Changwei. Effect of Filler to Asphalt Ratio on Low-temperature Performance of Direct Coal Liquefaction Residue Composite Modified Asphalt Mortar and Mixture. Materials Reports, 2024, 38(22): 23090053-7.
1 Luo W J, Lan X Z, Song YH, et al. Materials Reports, 2013, 27(11), 153(in Chinese). 罗万江, 兰新哲, 宋永辉, 等. 材料导报, 2013, 27(11), 153 2 Liu P F, Zang Y Q, Fang Y T. TGJournal of Fuel Chemistry and Technology, 2012, 40(6), 655(in Chinese). 刘朋飞, 张永奇, 房倚天. 燃料化学学报(中英文), 2012, 40(6), 655. 3 Ren Y G, Gu S Q, Xu Z Q, et al. Journal of Analytical and Applied Pyrolysis, 2022, 165, 105559. 4 Ji J, Wang Z, Li P F, et al. Journal of Cleaner Production, 2023, 395, 136273. 5 Zang Y J, Xue Y B, Liu Z M. Clean Coal Technology, 2021, 27(5), 60(in Chinese). 张雅婕, 薛永兵, 刘振民. 洁净煤技术, 2021, 27(5), 60. 6 Song Z Z, Sun M, Huang Y, et al. Chemical Industry and Engineering Progress, 2017, 36(9), 3273(in Chinese). 宋真真, 孙鸣, 黄晔, 等. 化工进展, 2017, 36(9), 3273. 7 Ji J, Shi Y F, Suo Z, et al. Journal of Traffic and Transportation Engineering, 2015, 15(4), 1(in Chinese). 季节, 石越峰, 索智, 等. 交通运输工程学报, 2015, 15(4), 1. 8 Zhao Y S. Study on the performances of DCLR modified asphalt and asphalt mortar. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2015(in Chinese). 赵永尚. 煤直接液化残渣改性沥青及其胶浆的性能研究. 硕士学位论文, 北京建筑大学, 2015. 9 Xu Y, Ji J, Suo Z, et al. Journal of Building Materials, 2016, 19(5), 939(in Chinese). 许鹰, 季节, 索智, 等. 建筑材料学报, 2016, 19(5), 939. 10 Ji J, Shi Y F, Suo Z, et al. Journal of Hefei University of Technology(Natural Science), 2016, 39(7), 955(in Chinese). 季节, 石越峰, 索智, 等. 合肥工业大学学报(自然科学版), 2016, 39(7), 955. 11 Ji J, Shi Y F, Suo Z, et al. Journal of Beijing University of Technology, 2015, 41(7), 1049(in Chinese). 季节, 石越峰, 索智, 等. 北京工业大学学报, 2015, 41(7), 1049. 12 Ji J, Suo Z, Shi Y F, et al. Journal of Highway and Transportation Research and Development, 2016, 33(5), 33(in Chinese). 季节, 索智, 石越峰, 等. 公路交通科技, 2016, 33(5), 33. 13 Ji J, Suo Z, Zhang R, et al. Construction and Building Materials, 2021, 295, 123545. 14 Ji J, Yuan Z K, Wei J M, et al. Journal of China University of Petroleum(Edition of Natural Science), 2019, 43(4), 166(in Chinese). 季节, 苑志凯, 魏建明, 等. 中国石油大学学报(自然科学版), 2019, 43(4), 166. 15 Ji J, Li H, Wang J N, et al. Journal of Fuel Chemistry and Technology, 2019, 47(8), 925(in Chinese). 季节, 李辉, 王佳妮, 等. 燃料化学学报, 2019, 47(8), 925. 16 Xu X Q. Study on compatibility between direct coal liquefaction residue and asphalt under single/composite compatibilization mode. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2022(in Chinese). 徐新强. 单一/复合增容方式下煤直接液化残渣与道路石油沥青相容性研究. 硕士学位论文, 北京建筑大学, 2022. 17 Ji J, Huang C W, Ma T, et al. China Journal of Highway and Transport, 2023, 36(6), 1(in Chinese). 季节, 黄昶惟, 马童, 等. 中国公路学报, 2023, 36(6), 1. 18 Espinosa L, Caro S, Wills J. Construction and Building Materials, 2020, 262, 120037. 19 Riara M, Tang P, Mo L, et al. Construction and Building Materials, 2018, 177, 388. 20 Xu Y L, Zhu H Z, Qing L, et al. Journal of Chongqing Jiaotong University(Natural Science), 2023, 42(8), 30. (in Chinese). 徐艳玲, 朱洪洲, 青亮, 等. 重庆交通大学学报(自然科学版), 2023, 42(8), 30. 21 Slebi-Acevedo J C, Lastra-González P, Castro-Fresno D, et al. Construction and Building Materials, 2020, 248(C), 118622. 22 Li Z N, Shen A Q, Guo Y C, et al. Journal of Building Materials, 2021, 24(1), 146(in Chinese). 李震南, 申爱琴, 郭寅川, 等. 建筑材料学报, 2021, 24(1), 146. 23 Airey D G. International Journal of Pavement Engineering, 2004, 5(3), 137. 24 Xie X B, Li M D Ling L Y, et al. Journal of Materials Science and Engineering, 2022, 40(3), 491(in Chinese). 谢祥兵, 李茂达, 梁林园, 等. 材料科学与工程学报, 2022, 40(3), 491. 25 Guo NS, Yu AK, Wang ZC, et al. Materials Reports, 2023, 37(17), 137(in Chinese). 郭乃胜, 于安康, 王志臣, 等. 材料导报, 2023, 37(17), 137. 26 Li C, Pan K, Wang L. Journal of Central South University(Science and Technology), 2021, 52(7), 2450(in Chinese). 李超, 潘科, 王岚. 中南大学学报(自然科学版), 2021, 52(7), 2450. 27 Liu K F, Liu C L, Li Q, et al. Materials, 2022, 15(20), 7223. 28 Li X J, Han S, Jia Z Q, et al. Journal of Guangxi University(Natural Science Edition), 2011, 36(1), 6(in Chinese). 李晓娟, 韩森, 贾志清, 等. 广西大学学报(自然科学版), 2011, 36(1), 6. 29 Saeid A S, Sina V, D. M E, et al. Construction and Building Materials, 2022, 359, 129275. 30 Sercan S, Mehmet E, Ekrem V G. Construction and Building Materials, 2021, 300, 124006. 31 Al-Qudsi A, Falchetto A C, Wang D, et al. Cold RegionsScience and Technology, 2020, 169, 102916. 32 Meng Y J, Kong W K, Gou C L, et al. Journal of Road Engineering, 2023, 3(1), 87. 33 Lu D X, Bui Ha H, Mofreh S. Engineering Fracture Mechanics, 2021, 242, 107452. 34 Wang D. Research on application of direct coal liquefaction residue modified asphalt mixture in pavement engineering. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2018(in Chinese). 王迪. 煤直接液化残渣改性沥青混合料在道路工程中的应用技术研究. 硕士学位论文, 北京建筑大学, 2018. 35 Ji J, Xu X Q, Xu Y, et al. Journal of Fuel Chemistry and Technology, 2021, 49(8), 1095(in Chinese). 季节, 徐新强, 许鹰, 等. 燃料化学学报, 2021, 49(8), 1095. 36 Ji J, Shi Y F, Li P F, et al. Journal of Xi'an University of Architecture & Technology(Natural Science Edition), 2015, 47(4), 511(in Chinese). 季节, 石越峰, 李鹏飞, 等. 西安建筑科技大学学报(自然科学版), 2015, 47(4), 511. 37 Ji J, Wang Z, Zhang R, et al. Construction and Building Materials, 2020, 257(4), 119489. 38 Yang L J, Long N Q, Wang L, et al. Journal of Building Materials, 2022, 25(12), 1313(in Chinese). 杨丽娟, 龙念泉, 王岚, 等. 建筑材料学报, 2022, 25(12), 1313. 39 Xu X Q, Tang S G, Yang J. Journal of Chang'an University(Natural Science Edition), 2020, 40(4), 14(in Chinese). 许新权, 唐胜刚, 杨军. 长安大学学报(自然科学版), 2020, 40(4), 14. 40 Ji J, Shi Y F, Suo Z, et al. Journal of Shenyang Jianzhu University(Natural Science), 2015, 31(6), 1041(in Chinese). 季节, 石越峰, 索智, 等. 沈阳建筑大学学报(自然科学版), 2015, 31(6), 1041. 41 Song WM, Wu H. Materials Reports, 2023, 37(16), 93(in Chinese). 宋卫民, 吴昊. 材料导报, 2023, 37(16), 93. 42 Li Z N, Shen A Q, Guo R C, et al. Journal of Building Materials, 2021, 24(1), 146(in Chinese). 李震南, 申爱琴, 郭寅川, 等. 建筑材料学报, 2021, 24(1), 146. 43 Xu T F. Research on regeneration method and performance of asphalt mixture with high rap content. Master's Thesis, Chongqing Jiaotong University, China, 2021(in Chinese). 徐腾飞. 高掺量旧料再生方法及其混合料性能研究. 硕士学位论文, 重庆交通大学, 2021. 44 Chen B Y S, Wang L, Zhang Q, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(2), 704(in Chinese). 陈白银霜, 王岚, 张琪, 等. 硅酸盐通报, 2022, 41(2), 704. 45 Zhao W H, Xie X B, Li G H, et al. Highway, 2021, 66(8), 304(in Chinese). 赵文辉, 谢祥兵, 李广慧, 等. 公路, 2021, 66(8), 304.