Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 13-18    https://doi.org/10.11896/j.issn.1005-023X.2017.019.002
  材料综述 |
铁电材料的电热效应及其研究进展*
王歆钰1, 镇思琦1, 董正超1,2, 仲崇贵1,2
1 南通大学理学院,南通 226019;
2 苏州大学物理与光电·能源学部,苏州 215006
Electrocaloric Effects of Ferroelectric Materials: an Overview
WANG Xinyu1, ZHEN Siqi1, DONG Zhengchao1,2, ZHONG Chonggui1,2
1 School of Sciences, Nantong University, Nantong 226019;
2 College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215006
下载:  全 文 ( PDF ) ( 1781KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来基于电热效应的绝热退极化制冷技术以环保、高效、可靠等特性受到了国内外的广泛关注。介绍了铁电材料的电热制冷机制,系统概括了不同类型和结构的铁电材料的电热效应方面的国内外研究进展,分析了存在的主要问题以及可能的解决方法,并对铁电材料在制冷方面的实际应用进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王歆钰
镇思琦
董正超
仲崇贵
关键词:  铁电材料  电热效应  绝热温变  绝热退极化制冷    
Abstract: As an environment friendly, efficient and reliable technology, adiabatic depolarization refrigeration technology based on the electrocaloric effect (ECE) has attracted great attention in recent years. The refrigeration mechanism of ferroelectric materials based on ECE is firstly introduced systematically in this article. The main research progress in ECE of ferroelectric materials with different types and configurations is summarized, and the existing problems and solutions are analyzed. Finally, the possible applications of ferroelectric materials in refrigeration are discussed.
Key words:  ferroelectric material    electrocaloric effect    adiabatic temperature change    adiabatic depolarization refrigeration
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  O482.6  
基金资助: *国家自然科学基金(11447229); 江苏省自然科学基金 (BK2012655); 江苏省研究生科研创新项目(KYLX16_0969)
作者简介:  王歆钰: 女, 1993年生, 硕士研究生, 主要从事多铁性材料的理论研究 E-mail:1291411547@qq.com 仲崇贵:通讯作者, 男, 1970年生, 博士, 教授, 主要从事多铁材料的理论和计算研究 E-mail:chgzhong@ntu.edu.cn
引用本文:    
王歆钰, 镇思琦, 董正超, 仲崇贵. 铁电材料的电热效应及其研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 13-18.
WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview. Materials Reports, 2017, 31(19): 13-18.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.002  或          http://www.mater-rep.com/CN/Y2017/V31/I19/13
1 Lombardo G, Pohl R O. Electrocaloric effect and a new type of impurity mode[J]. Phys Rev Lett,1965,15(7):291.
2 Olsen R B, Butler W F, Payne D A, et al. Observation of a polarocaloric (electrocaloric) effect of 2 ℃ in lead zirconate modified with Sn4+and Ti4+[J]. Phys Rev Lett,1980,45(17):1436.
3 Mischenko A S, Zhang Q, Whatmore R W, et al. Giant electrocaloric effect in the thin film relaxor ferroelectric 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 near room temperature[J]. Appl Phys Lett,2006,89(24):242912.
4 Lisenkov S, Ponomareva I. Intrinsic electrocaloric effect in ferroelectric alloys from atomistic simulations[J]. Phys Rev B,2009,80(14):140102.
5 Qiu J H, Ding J N, Yuan N Y, et al. Effect of misfit strain on the electrocaloric effect of polydomain epitaxial ferroelectric thin films[J]. Chin Phys B,2012,21(9):097701.
6 Moya X, Stern-Taulats E, et al. Giant electrocaloric strength in single-crystal BaTiO3[J]. Adv Mater,2013,25(9):1360.
7 Li Q, Zhang G, Zhang X, et al. Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy[J]. Adv Mater,2015,27(13):2236.
8 Grünebohm A, Nishimatsu T. Influence of defects on ferroelectric and electrocaloric properties of BaTiO3[J]. Phys Rev B,2016,93(13):134101.
9 Scott J F. Electrocaloric materials [J]. Annu Rev Mater Res,2011,41:229.
10 Valant M. Electrocaloric materials for future solid-state refrigeration technologies[J]. Prog Mater Sci,2012,57(6):980.
11 Bai G, Li R, Liu Z G, et al. Tuned dielectric, pyroelectric and piezoelectric properties of ferroelectric P(VDF-TrFE) thin films by using mechanical loads[J]. J Appl Phys,2012,111(4):044102.
12 Peng B L, Fan H Q, Zhang Q. A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a re-laxor Pb0.8Ba0.2ZrO3 thin film at room temperature[J]. Adv Funct Mater,2013,23(23):2987.
13 Vopson M M. Theory of giant-caloric effects in multiferroic mate-rials[J]. J Phys D: Appl Phys,2013,46(34):345304.
14 Zhan D, Xu Q, Huang D P, et al. Dielectric nonlinearity and electric breakdown behaviors of Ba0.95Ca0.05Zr0.3Ti0.7O3 ceramics for energy storage utilizations[J]. J Alloys Compd,2016,682:594.
15 Trupina L, Nedelcu L, Negrila C, et al. Growth of highly textured iridium thin films and their stability at high temperature in oxygen atmosphere[J]. J Mater Sci,2016,51(18):8711.
16 Hao X. Electric-field tunable electrocaloric effects from phase transition between antiferroelectric and ferroelectric phase[J]. Appl Phys Lett,2014,104:022902.
17 Izyumov Y A, Syromyatnikov V N. Phase transitions and crystal symmetry[M]. Dordrecht: Kluwer Publishers,1990.
18 Landau L D, Lifshitz E M. Statistical Physics[M]. 3rd Edition. Oxford: Pergamon Press:1980.
19 Morozovska A N, Glinchuk M D, et al. Ferroelectricity and ferromagnetism in EuTiO3 nanowires[J]. Phys Rev B,2011,84(20):205403.
20 Marathe M, Grünebohm A, et al. First-principles-based calculation of the electrocaloric effect in BaTiO3:A comparison of direct and indirect methods[J]. Phys Rev B,2016,93(5):054110.
21 Valant M, Dunne L J, Axelsson A K, et al. Electrocaloric effect in a ferroelectric Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystal[J]. Phys Rev B,2010,81(21):214110.
22 Hamad M A. Investigations on electrocaloric properties of ferroelectric Pb(Mg0.067Nb0.133Zr0.8)O3[J]. Appl Phys Lett,2013,102(14):142908.
23 Sanlialp M, Shvartsman V V, Acosta M, et al. Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3-0.35(Ba0.7Ca0.3)TiO3 ceramics obtained by direct measurements[J]. Appl Phys Lett,2015,106(6):062901.
24 Mischenko A S, Zhang Q, Scott J F. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3[J]. Science,2006,311(5765):1270.
25 Zhang G Z, Li Q, et al. Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration[J]. Adv Mater,2015,27(8):1450.
26 Zheng G P, Uddin S, Zheng X C, et al. Structural and electrocaloric properties of multiferroic-BiFeO3 doped 0.94Bi0.5Na0.5TiO3-0.06Ba-TiO3 solid solutions[J]. J Alloys Compd,2016,663:249.
27 Crossley S, Usui T, Nair B, et al. Direct electrocaloric measurement of 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 films using scanning thermal microscopy[J]. Appl Phys Lett,2016,108(3):032902.
28 Kaddoussi H, Lahmar A, et al. Indirect and direct electrocaloric measurements of (Ba1-xCax)(Zr0.1Ti0.9)O3 ceramics (x=0.05, x =0.20)[J]. J Alloys Compd,2016,667:198.
29 Wang J F, Yang T Q, Chen S C, et al. Nonadiabatic direct measurement electrocaloric effect in lead-free Ba,Ca(Zr,Ti)O3 ceramics[J]. J Alloys Compd,2013,550:561.
30 Kobeco P, Kurtchatov I. Dielectric properties of Rochelle salt crystal[J].Z Phys,1930,66(3):192.
31 Lu S G, Zhang Q M. Electrocaloric materials for solid-state refrigeration[J]. Adv Mater,2009,21(19):1983.
32 Akcay G, Alpay S P, Mantese J V, et al. Magnitude of the intrinsic electrocaloric effect in ferroelectric perovskite thin films at high electric fields[J]. Appl Phys Lett,2007,90(25):252909.
33 Neese B, Chu B J, Lu S G, et al. Large electrocaloric effect in ferroelectric polymers near room temperature[J]. Science,2008,321(5890):821.
34 Qiu J H, Ding J N, Yuan N Y, et al. Effect of misfit strain on the electrocaloric effect of P(VDF-TrFE) copolymer thin films[J]. Eur Phys J B,2011,84:25.
35 Zhang T D, Li W L, Cao W P, et al. Giant electrocaloric effect in PZT bilayer thin films by utilizing the electric field engineering [J]. Appl Phys Lett,2016,108(16):162902.
36 Bokov A A, Ye Z G. Recent progress in relaxor ferroelectrics with perovskite structure[J]. J Mater Sci,2006,41(1):31.
37 Shvartsman V V, Lupascu D C. Lead-free relaxor ferroelectrics[J]. J Am Ceram Soc,2012,95(1):1.
38 Kriaa I, Abdelmoula N, Maalej A, et al. Study of the electrocaloric effect in the relaxor ferroelectric ceramic 0.75PMN-0.25PT[J]. J Electron Mater,2015,44(12):4852.
39 Satyanarayan P, Aditya C, Rahul V. Mechanical confinement for tuning ferroelectric response in PMN-PT single crystal[J]. J Appl Phys,2015,117(8):084102.
40 Ramesh G,Rao M S R, Sivasubramanian V,et al. Electrocaloric effect in (1-x)PIN-xPT relaxor ferroelectrics [J]. J Alloys Compd,2015,663:444.
41 Zhou W L, Xia K, Xu D, et al. Magnetoelectric properties of quantum paraelectric EuTiO3 materials on the strain effect[J]. Acta Phys Sin,2012,61(9):097702(in Chinese).
周文亮,夏坤,许达,等.应变作用下量子顺电材料EuTiO3的磁电性[J].物理学报,2012,61(9):097702.
42 Lee J H, Fang L, Vlahos E, et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling[J]. Nature,2010,466(7309):954.
43 Wang X Y, Chu R J, Wei S N, et al. Phenomenological theory for investigation on stress tunable electrocaloric effect in ferroelectric EuTiO3 films[J]. Acta Phys Sin,2015,64(11):117701(in Chinese).
王歆钰,储瑞江,魏胜男,等.应力作用下EuTiO3铁电薄膜的电热效应研究[J].物理学报,2015,64(11):117701.
44 Wang X Y, Chu R J, Dong Z C, et al. The giant electrocaloric effect in EuTiO3 nanowires near room temperature[J]. J Alloys Compd,2015,649:261.
No related articles found!
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed