Please wait a minute...
材料导报  2022, Vol. 36 Issue (5): 20100169-11    https://doi.org/10.11896/cldb.20100169
  高分子与聚合物基复合材料 |
植物纤维增强复合材料的湿热老化研究进展
张显1, 蔡明1,2, 孙宝忠2
1 上海工程技术大学航空运输学院,上海 201620
2 东华大学高性能纤维及制品教育部重点实验室,上海 201620
Research Progress of Hygrothermal Aging of Plant Fiber Reinforced Composites
ZHANG Xian1, CAI Ming1,2, SUN Baozhong2
1 School of Air Transportation, Shanghai University of Engineering Science, Shanghai 201620, China
2 Key Laboratory of High Performance fibers & products, Ministry of Education, Donghua University, Shanghai 201620, China
下载:  全 文 ( PDF ) ( 5066KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 植物纤维是一种绿色材料,不仅来源广泛、价格低廉、比强度和比模量高,而且具有可降解性和环境友好性等优点,因此用植物纤维作为增强材料来制备复合材料,即复合材料的绿色化,已经成为复合材料科学与技术的发展方向之一。目前,植物纤维增强复合材料已经应用于航空航天、汽车、轨道交通等众多行业中,未来也有着十分广阔的发展前景。
尽管人们对植物纤维增强复合材料的热情很高,但其与聚合物间弱的界面粘结性和自身高的吸水特性极大限制了这种复合材料的广泛使用。在湿热的环境中,材料会发生老化并使其力学性能降低。植物纤维具备典型的多尺度微观结构和与生俱来的亲水性质,使其增强复合材料的老化机理变得更为复杂。
近些年,研究者们对植物纤维的内部微观形态进行分析研究,总结出纤维与基体之间协同作用的老化失效模式:水分子进入植物纤维内腔与纤维素结合导致纤维发生润胀,纤维与基体界面产生微裂纹,果胶、半纤维素等水溶性物质发生降解并浸出导致纤维与基体之间发生分裂和剥离即界面脱粘,从而使材料性能下降。为预测出植物纤维增强复合材料老化后的性能,学者们也提出了不同的老化预测模型,然而,针对有效地准确预测植物纤维增强复合材料的老化预测模型还有待进一步的研究。
本文归纳了植物纤维增强复合材料湿热老化的研究进展,包括植物纤维、树脂基体及其增强复合材料的老化机理,湿热老化对其力学性能的影响以及植物纤维增强复合材料老化预测模型的研究,最后对植物纤维增强复合材料的湿热老化研究进行总结并对其发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张显
蔡明
孙宝忠
关键词:  植物纤维  湿热老化  力学性能  老化机理  预测模型    
Abstract: Plant fibers are widely used as a reinforcing material in the aerospace, automobile, and rail transit industries. They afford advantages over alternative materials, including high specific strength and modulus properties, wide range of sources, lower costs and higher biodegradability.
However, their use is limited in main load-bearing structure applications owing to their weak interface and easy water absorption characteristics. This is especially true in hydrothermal environments where the mechanical properties are rapidly weakened by hydrothermal aging. Compared to traditional fibers, plant fibers have unique hierarchical and multiscale structures and inherent hydrophilic chemical compositions, which make the aging mechanism of their composites more complex.
In recent years, the aging mechanisms of plant fibers have been studied according to their internal micro morphology. The microstructure and chemical variations of plant fibers play a major role in the aging behavior of composites under hydrothermal conditions. Firstly, water molecules enter the lumen of the plant fiber and combine with cellulose, resulting in fiber swelling. Microcracks then form at the interface between the fiber and matrix. The plant fiber degrades and leaches products including pectin and hemicellulose, and significant debonding of the interface between the fiber and matrix occurs. This weakens the mechanical properties and reduces the performance of the plant fiber. Various aging prediction models have been proposed in previous studies to predict the aging properties of plant fiber reinforced composites; however, further research is still required.
This paper summarizes research progress on the hydrothermal aging of plant fiber reinforced composites and is separated into three parts. First, the aging mechanism of plant fiber, resin matrix and reinforced composites under hydrothermal aging environments is outlined. The influence of hydrothermal aging on the mechanical properties and the aging prediction model of plant fiber reinforced composites are discussed. Finally, this paper provides a summary of the research to date on the hygrothermal aging of plant fiber reinforced composites, and also a prospective discussion about the future development trend of this subject.
Key words:  plant fiber    hygrothermal aging    mechanical property    aging mechanism    prediction model
出版日期:  2022-03-10      发布日期:  2022-03-08
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51675095);中央高校主任基金:高性能纤维及制品教育部重点实验室项目(2232021G-02)
通讯作者:  mingning666@126.com   
作者简介:  张显,2019年6月毕业于南京工程学院,获得工学学士学位。现为上海工程技术大学航空运输学院硕士研究生。目前主要研究领域为植物纤维复合材料的湿热老化。
蔡明,上海工程技术大学航空运输学院讲师、硕士研究生导师。2018年3月在同济大学航空航天与力学学院力学专业获得博士学位。2012—2017年在日本德岛大学智能力学系统工程专业获得第二博士学位。研究方向为航空复合材料的应用及绿色复合材料的界面与耐久性研究。近年来,在植物纤维改性及复合材料领域发表多篇论文,包括Composites Part AIndustrial Crops and ProductsAdvanced Materials Research等。
引用本文:    
张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
ZHANG Xian, CAI Ming, SUN Baozhong. Research Progress of Hygrothermal Aging of Plant Fiber Reinforced Composites. Materials Reports, 2022, 36(5): 20100169-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100169  或          http://www.mater-rep.com/CN/Y2022/V36/I5/20100169
1 Sanjay M R, Madhu P, Jawaid M, et al. Journal of Cleaner Production, 2018, 172, 566.
2 Rajak D K, Pagar D D, Kumar R, et al. Journal of Materials Research and Technology, 2019, 8(6), 6354.
3 Corbière-Nicollier T, Laban BG, Lundquist L, et al.Resources, Conservation and Recycling, 2001, 33(4), 267.
4 Li Y, Mai Y W, Ye L. Composites Science and Technology, 2000, 60(11), 2037.
5 Bledzki A K, Gassan J. Progress in Polymer Science,1999,24(2),221.
6 Santoni A, Bonfiglio P, Fausti P, et al.Applied Acoustics, 2019, 150, 279.
7 Liu K, Takagi H, Osugi R, et al.Composites Science and Technology, 2012, 72(5), 633.
8 Mahmoudi S, Kervoelen A, Robin G, et al.Composite Structures, 2019, 208, 426.
9 Bogoeva-Gaceva G, Avella M, Buzarovska A, et al.Polymer Composites, 2007, 28, 98.
10 Mittal V, Saini R, Sinha S.Composites Part B: Engineering, 2016, 99, 425.
11 Karthi N, Kumaresan K, Sathish S, et al.Materials Today: Proceedings, 2020, 27, 2828.
12 Li Y, Li Q. Acta Mechanica Solida Sinica, 2017, 38(3), 215(in Chinese).
李岩, 李倩. 固体力学学报, 2017, 38(3), 215.
13 Silva G, Kim S, Aguilar R, et al.Sustainable Materials and Technologies, 2020, 23, e00132.
14 Sreenivas H T, Krishnamurthy N, Arpitha G R.International Journal of Lightweight Materials and Manufacture, 2020, 3(4), 328.
15 Jiang B T, Wang Q, Zhang Y, et al.Chinese Agricultural Science Bulletin, 2019, 35(23), 35(in Chinese).
姜弼天, 王琪, 张炎, 等. 中国农学通报, 2019, 35(23), 35.
16 Zhang D J, Liu G, Bao J W, et al.Acta Materiae Compositae Sinica, 2016, 33(7), 1390(in Chinese).
张代军, 刘刚, 包建文, 等. 复合材料学报, 2016, 33(7), 1390.
17 Gao K, Shi H Q, Sun B G, et al.Acta Materiae Compositae Sinica, 2016, 33(6), 1147(in Chinese).
高坤, 史汉桥, 孙宝岗, 等. 复合材料学报, 2016, 33(6), 1147.
18 Leveque D, Schieffer A, Mavel A, et al.Composites Science and Techno-logy, 2005, 65(3-4), 395.
19 Wang W L, Ji D Y, Chen C L.Fiber Composites, 2019, 36(1), 35(in Chinese).
王威力, 纪丹阳, 陈春露. 纤维复合材料, 2019, 36(1), 35.
20 Mokhothu TH, John MJ.Carbohydr Polym, 2015, 131, 337.
21 Wang Y Y, Liu J, Meng J Y, et al.Journal of Materials Engineering, 2011(7), 85(in Chinese).
王云英, 刘杰, 孟江燕, 等. 材料工程, 2011(7), 85.
22 Dungani R, Aditiawati P, Islam M N, et al.Durability and life prediction in biocomposites, fibre-reinforced composites and hybrid composites, Woodhead Publishing, UK, 2019, pp. 173.
23 Lv X J, Zhang Q, Ma Z Q, et al.Journal of Materials Engineering, 2005(11), 50(in Chinese).
吕小军, 张琦, 马兆庆, 等. 材料工程, 2005(11), 50.
24 Kang H, Liu R, Huang Y.Polymer, 2015, 70, A1.
25 John M, Thomas S.Carbohydrate Polymers, 2008, 71(3), 343.
26 Li Y, Luo Y.Acta Mechanica Solida Sinica, 2010, 31(6), 613(in Chinese).
李岩, 罗业. 固体力学学报, 2010, 31(6), 613.
27 Faruk O, K.Bledzki A, Fink H P, et al.Progress in Polymer Science, 2012, 37(11), 1552.
28 Jauhari N, Mishra R, Thakur H.Materials Today: Proceedings, 2015, 2(4-5), 2868.
29 Ramesh M, Palanikumar K, Reddy K H.Renewable and Sustainable Energy Reviews, 2017, 79, 558.
30 Sarasini F, Fiore V.Journal of Cleaner Production, 2018, 195, 240.
31 Thakur V K, Thakur M K.Carbohydrate Polymers, 2014, 109, 102.
32 Pei J C, Ping Q W, Tang A M, et al.Plant fiber chemistry, Chemical Industry Press, China,2012, pp. 265(in Chinese).
裴继诚, 平清伟, 唐爱民, 等. 植物纤维化学, 化学工业出版社, 2012, pp. 265.
33 Xie K Y, Li H, Sun Y, et al.Materials for Mechanical Engineering, 2014, 38(8), 1(in Chinese).
谢可勇, 李晖, 孙岩, 等. 机械工程材料, 2014, 38(8), 1.
34 Assarar M, Scida D, El Mahi A, et al.Materials & Design, 2011, 32(2), 788.
35 Lee K Y, Bismarck A.Interface engineering of natural fibre composites for maximum performance, Woodhead Publishing, UK, 2011, pp. 275.
36 Scida D, Assarar M, Poilane C, et al.Composites Part B: Engineering, 2013, 48, 51.
37 Regazzi A, Corn S, Ienny P, et al.Polymer Degradation & Stability, 2016, 130, 300.
38 Berges M, Léger R, Placet V, et al.Composites Part A: Applied Science and Manufacturing, 2016, 88, 165.
39 Espert A, Vilaplana F, Karlsson S.Composites Part A: Applied Science and Manufacturing, 2004, 35(11), 1267.
40 Maslinda A B, Abdul Ma M S, Ridzuan M J M, et al. Composite Structures, 2017, 167, 227.
41 Xue B, Zhang T N.Fiber Composites, 2018, 35(2), 7(in Chinese).
薛冰, 张铁男. 纤维复合材料, 2018, 35(2), 7.
42 Badia J D, Santonja-Blasco L, Martínez-Felipe A, et al. Polymer Degradation and Stability, 2012, 97(10), 1881.
43 Proikakis C S, Mamouzelos N J, Tarantili P A, et al. Polymer Degradation and Stability, 2006, 91(3), 614.
44 Lv X Y, Jiang L, Yan L, et al.Fiber Reinforced Plastics/Composites, 2009(3), 76(in Chinese).
吕新颖, 江龙, 闫亮, 等. 玻璃钢/复合材料, 2009(3), 76.
45 Shi Z Q.Aerospace Materials and Technology, 2008(5), 1(in Chinese).
石增强. 宇航材料工艺, 2008(5), 1.
46 Chen Y L, Liu X.Equipment Environmental Engineering, 2010, 7(4), 49(in Chinese).
陈跃良, 刘旭. 装备环境工程, 2010, 7(4), 49.
47 Gibson R F. Principles of composite material mechanics, CRC Press, USA, 2012.
48 Jin F L, Li X, Park S J. Journal of Industrial and Engineering Chemistry, 2015, 29, 1.
49 Huang Z X.Thermosetting resin composites and their applications, Chemical industry press, China, 2006, pp. 156(in Chinese).
黄志雄. 热固性树脂复合材料及其应用, 化学工业出版社, 2006, pp. 156.
50 Yi X S, Du S Y, Zhang L T.Composite handbook, Chemical industry press, China, 2009, pp. 224(in Chinese).
益小苏, 杜善义, 张立同. 复合材料手册, 化学工业出版社, 2009, pp. 224.
51 Hakkarainen M, Albertsson A C, Karlsson S.Polymer Degradation and Stability, 1996, 52(3), 283.
52 Joseph P V, Rabello M S, Mattoso L H C, et al.Composites Science and Technology, 2002, 62, 1357.
53 Cheour K, Assarar M, Scida D, et al.Composite Structures, 2016, 152, 259.
54 Dhakal H, Zhang Z, Richardson M.Composites Science and Technology, 2006, 67(7-8), 1674.
55 Hachem Z E, Célino A, Challita G, et al. Industrial Crops & Products, 2019, 140, 111634.
56 Azwa Z N, Yousif B F, Manalo A C, et al.Materials & Design, 2013, 47, 424.20100169-20100169-
57 Chilali A, Assarar M, Zouari W, et al.Composite Structures, 2018, 206, 177.
58 Li Y, Xue B.Polymer Degradation and Stability, 2016, 126, 144.
59 Regazzi A, Corn S, Ienny P, et al.Industrial Crops & Products, 2016, 84, 358.
60 Hu R H, Sun M Y, Lim J K. Materials & Design, 2010, 31(7), 3167.
61 Wang X, Petru。 M.Construction and Building Materials, 2020, 240, 117909.
62 Guo B C, Fu W W, Jia D M, et al.Acta Materiae Compositae Sinica, 2002(3), 6(in Chinese).
郭宝春, 傅伟文, 贾德民, 等. 复合材料学报, 2002(3), 6.
63 Zhang D, Milanovic N R, Zhang Y, et al. Composites Part B: Enginee-ring, 2014, 60, 186.
64 Habibi M, Laperrière L, Hassanabadi H M. Composites Part B: Engineering, 2019, 166, 31.
65 Chen X, Yin P, Xian G J, et al.Journal of Aeronautical Materials, 2013, 33(2), 58(in Chinese).
陈旭, 尹鹏, 咸贵军, 等. 航空材料学报, 2013, 33(2), 58.
66 Jeannin T, Berges M, Gabrion X, et al.Composites Part B: Engineering, 2019, 174, 107056.
67 Mejri M, Toubal L, Cuillière J C, et al.International Journal of Fatigue, 2018, 108, 96.
68 Johnson M, Walter S L, Flinn B D, et al.Acta Biomater, 2010, 6(6), 2181.
69 Han Y Z, Li J, Zhang D P, et al.Acta Materiae Compositae Sinica, 2020, 37(7), 1531(in Chinese).
韩耀璋, 李进, 张佃平, 等. 复合材料学报, 2020, 37(7), 1531.
70 Le Duigou A, Davies P, Baley C.Composites Part A: Applied Science and Manufacturing, 2013, 48, 121.
71 Prasad V, Joseph MA, Sekar K.Composites Part A: Applied Science and Manufacturing, 2018, 115, 360.
72 Wang B, Li L.Chinese Plastics, 2013, 27(2), 14(in Chinese).
王冰, 李玲. 中国塑料, 2013, 27(2), 14.
73 Wen B Y, Li X Y, Zhang Y.Acta Materiae Compositae Sinica, 2015, 32(1), 54(in Chinese).
温变英, 李晓媛, 张扬. 复合材料学报, 2015, 32(1), 54.
74 Le Duigou A, Bourmaud A, Davies P, et al.Ocean Engineering, 2014, 90, 140.
75 Le Duigou A, Bourmaud A, Baley C.Industrial Crops and Products, 2015, 70, 204.
76 Davies P, Choqueuse D, Centre I B. In:12-ageing of composites in marine vessels, Woodhead Publishing, UK, 2008, pp. 326.
77 Hou R L, He C X, Xue J, et al.Acta Materiae Compositae Sinica, 2013, 30(5), 86(in Chinese).
侯人鸾, 何春霞, 薛娇, 等. 复合材料学报, 2013, 30(5), 86.
78 Kabir M M, Wang H, Lau K T, et al. Composites Part B: Engineering, 2012, 43(7), 2883.
79 Abdelmouleh M, Boufi S, Belgacem M, et al.Composites Science and Technology, 2007, 67(7-8), 1627.
80 Ma H L,Chen J,Kong Z W. Biomass Chemical Engineering, 2019, 53(4), 50(in Chinese).
马红亮, 陈健, 孔振武. 生物质化学工程, 2019, 53(4), 50.
81 Ma Y F, Zhang W, Wang C P, et al.Materials Reports A:Review Papers, 2011, 25(10), 81(in Chinese).
马玉峰, 张伟, 王春鹏, 等. 材料导报:综述篇, 2011, 25(10), 81.
82 El-Abbassi F E, Assarar M, Ayad R, et al. Composite Structures, 2015, 133, 451.
83 Gao C, Li M, Wang J, et al.Acta Materiae Compositae Sinica, 2013, 30(5), 21(in Chinese).
高聪, 李敏, 王娟, 等. 复合材料学报, 2013, 30(5), 21.
84 Tanobe V O A, Flores-Sahagun T H S, Amico S C, et al. Defence Science Journal, 2014, 64(3), 273.
85 Zhao W J, Hu Q X, Yan W L, et al.Acta Materiae Compositae Sinica, 2018, 35(1), 35(in Chinese).
赵文杰, 胡求学, 闫雯玲, 等. 复合材料学报, 2018, 35(1), 35.
86 Ventura H, Claramunt J, Rodrguez-Pérez M A, et al.Polymer Degradation & Stability, 2017, 142, 129.
87 Sreekala M S, Thomas S.Composites Science and Technology, 2003, 63(6), 861.
88 Karbhari V M, Abanilla M A.Composites Part B: Engineering, 2007, 38(1), 10.
89 Abanilla M A, Li Y, Karbhari V M.Composites Part B: Engineering, 2005, 37(2-3), 200.
90 Tan W, Na J X, Ren J M, et al.Acta Materiae Compositae Sinica, 2020, 37(4), 859(in Chinese).
谭伟, 那景新, 任俊铭, 等. 复合材料学报, 2020, 37(4), 859.
91 Niu Y F, Li Z Q, Zhu X F.Acta Materiae Compositae Sinica, 2020, 37(1), 104(in Chinese).
牛一凡, 李璋琪, 朱晓峰. 复合材料学报, 2020, 37(1), 104.
92 Sun B,Li Y. Fiber Reinforced Plastics/Composites, 2013(4), 29(in Chinese).
孙博, 李岩. 玻璃钢/复合材料, 2013(4), 29.
93 Ferry J D, Jr W C C, Zand R, et al.Journal of Colloid Science, 1957, 12(1), 53.
94 Ibarra L, Paños D.Journal of Applied Polymer Science, 1998, 67(10), 1819.
95 Ye H J, Zhan M Z.Materials Engineering, 1995(10), 3(in Chinese).
叶宏军,詹美珍. 材料工程, 1995(10), 3.
96 Zhao Y, Liang Z H.Journal of Aeronautical Materials, 2001(2), 55(in Chinese).
肇研, 梁朝虎. 航空材料学报, 2001(2), 55.
97 Zhu K K,Ni A Q,Wang J H. Fiber Reinforced Plastics/Composites, 2016(5), 48(in Chinese).
朱坤坤, 倪爱清, 王继辉. 玻璃钢/复合材料, 2016(5), 48.
98 Tian F, Zhong Z, Pan Y.Composite Structures, 2018, 200, 144.
99 Pan Y, Zhong Z.Composites Science and Technology, 2014, 103, 22.
100 Yu Y, Wu H.Industrial & Engineering Chemistry Research, 2010, 49(8), 3902.
101 Pan Y, Zhong Z.Journal of the Mechanics and Physics of Solids, 2014, 69, 132.
102 Tian F, Zhong Z.Composites Part A: Applied Science and Manufactu-ring, 2019, 125, 105564.
103 Tian F, Pan Y, Zhong Z.Composites Science and Technology, 2017, 142, 156.
[1] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[2] 马俊军, 蔺鹏臻. 基于细观尺度的UHPC氯离子扩散预测CA模型[J]. 材料导报, 2022, 36(5): 21040188-6.
[3] 张晓光, 时海军, 刘杰, 党漭, 何燕. 碳纳米管对膨胀阻燃天然橡胶的燃烧和力学性能的影响[J]. 材料导报, 2022, 36(5): 21010074-6.
[4] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[5] 孙晓燕, 陈龙, 王海龙, 张静. 面向水下智能建造的3D打印混凝土配合比优化研究[J]. 材料导报, 2022, 36(4): 21050230-9.
[6] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[7] 闫昭朴, 王扬卫, 张燕, 刘毅烽, 程焕武. 玄武岩纤维复合材料静、动态力学性能和抗弹性能研究进展[J]. 材料导报, 2022, 36(4): 20110209-9.
[8] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[9] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[10] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[11] 庞宝林, 王曼, 席晓丽. Cantor合金力学性能及其组织稳定性研究进展[J]. 材料导报, 2022, 36(2): 20080242-5.
[12] 欧阳柳章, 彭琢雅, 王辉, 刘江文, 朱敏. 三级金属氢化物氢压缩机设计及氢压缩材料的研究进展[J]. 材料导报, 2022, 36(1): 21030081-11.
[13] 赵燕春, 李暑, 李春玲, 赵鹏彪, 李文生, 寇生中, 阎峰云. 热处理对铁基中熵合金微观结构及力学性能的影响[J]. 材料导报, 2022, 36(1): 20090161-5.
[14] 杨东青, 王小伟, 彭勇, 周琦, 王克鸿. 超声冲击辅助熔化极电弧增材制造316L不锈钢的组织和性能研究[J]. 材料导报, 2022, 36(1): 20120270-4.
[15] 杨佳行, 韩永典, 徐连勇. 瞬态电流键合对Sn-Ag-Cu钎料焊点界面反应的影响[J]. 材料导报, 2022, 36(1): 20100132-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed