Please wait a minute...
材料导报  2023, Vol. 37 Issue (3): 21080213-7    https://doi.org/10.11896/cldb.21080213
  无机非金属及其复合材料 |
高密实多元复合水泥浆体组成设计与抗侵蚀性能研究
韩宇栋1, 郭奕群2,*, 李嘉豪2, 张同生2,3,*, 韦江雄2,3, 余其俊2,3,4
1 中冶建筑研究总院有限公司,北京 100088
2 华南理工大学材料科学与工程学院,广州 510641
3 广东省建筑材料低碳技术工程技术研究中心,广州 510641
4 合肥工业大学土木与水利工程学院,合肥 230009
Design of a Densified Quadruple Blended Cement and Resistance to Ions Attacks
HAN Yudong1, GUO Yiqun2,*, LI Jiahao2, ZHANG Tongsheng2,3,*, WEI Jiangxiong2,3, YU Qijun2,3,4
1 Central Research Institute of Building and Construction, MCC Group Co. Ltd, Beijing 100088, China
2 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
3 Guangdong Low Carbon Technology Engineering Center for Building Materials, Guangzhou 510641, China
4 College of Civil Engineering, Hefei University of Technology, Hefei 230009, China
下载:  全 文 ( PDF ) ( 5814KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Cl-与SO2-4侵蚀是造成海洋环境下水泥混凝土劣化的主要原因,掺入辅助胶凝材料(SCMs)是改善水泥浆体抗侵蚀性能的有效方法。引入细粒度、高活性胶凝材料能加速复合水泥力学性能的发展并改善其抗蚀性,但会造成浆体流变性差、收缩应力大、开裂风险高等问题。基于Dinger-Andersen颗粒级配模型,在硅酸盐水泥基础上引入细矿渣、粗粉煤灰以及偏高岭土活性组分,设计并制备了SCMs含量高达60%的高密实度多元级配复合水泥。研究结果表明:多元级配复合水泥强度接近硅酸盐水泥,抗Cl-与SO2-4侵蚀性能显著提升,采用快速氯离子迁移系数法(RCM)测得氯离子扩散系数降低81%,30次干湿循环硫酸盐侵蚀后耐蚀系数仍有77%。高密实度多元级配复合水泥浆体初始堆积密实、持续水化,使得孔隙显著细化,同时水化产物对氯离子固化作用强,有效阻滞有害离子向内部迁移。此外,SCMs的高效水化大量消耗Ca(OH)2,抑制了二次钙钒石等侵蚀产物的生成。通过颗粒级配调控与组成设计,可充分发挥胶凝材料的水化特性,显著提升浆体的密实性与抗蚀性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩宇栋
郭奕群
李嘉豪
张同生
韦江雄
余其俊
关键词:  抗氯盐侵蚀  抗硫酸盐侵蚀  孔结构  水化产物  复合水泥    
Abstract: Deterioration of concrete in marine environment was usually caused by chloride and sulfate attacks, and incorporating supplementary cementitious materials (SCMs) was an effective way to improve the resistance of concrete for ions attack. Although the utilization of fine cementitious materials with high hydraulic activity was beneficial to the development of mechanical properties and ions attack resistance, it would result in the poor flowability, significant internal stress, and high cracking risk of cement paste. In present study, on the basic of Dinger-Andersen particle distribution model, fine blast furnace slag and coarse fly ash were introduced into commercial Portland cement, the metakaolin was also adopted as functional component, and then the densified quadruple blended cement containing 60% SCMs was prepared. The prepared blended cement presented comparable strength with Portland cement at the early age and much higher resistance for chloride or sulfate attacks at 28 d. The RCM chloride diffusion coefficient of quadruple blended cement decreased 81% compared with Portland cement, and its index of residual strength after 30 drying-wetting cycles in sulfate solution was as high as 77%. The higher packing density and continuous hydration of quadruple blended cement paste led to significant pore size refinement and formation of products with higher chloride binding capacity, which helped block the ingress of aggressive ions from external. Moreover, more Ca(OH)2 was consumed due to efficient hydration of SCMs in quadruple blended cement, and the secondary ettringite formation was limited. According to the microstructural design of cement paste, the hydraulic activity of cementitious materials can be efficiently utilized, and the structural compactness of blended cement and its resistance to ions attacks can be improved subsequently.
Key words:  chloride resistance    sulfate resistance    pore structure    hydration product    blended cement
出版日期:  2023-02-10      发布日期:  2023-02-23
ZTFLH:  TU528  
基金资助: 国家重点研发计划项目(2020YFC1909903);国家自然科学基金(52102019;52122201);北京市工业建筑特种材料工程技术研究中心开放基金(JZA2019Kj02)
通讯作者:  *msyqguo@scut.edu.cn;mstszhang@scut.edu.cn,郭奕群,华南理工大学博士后助理研究员。2014年毕业于华南理工大学,获得学士学位。2020年毕业于华南理工大学,获得工学博士学位。主要研究领域包括海洋工程用高抗蚀水泥基材料、绿色低碳水泥等。发表论文10余篇。
张同生,华南理工大学研究员、博士研究生导师,国家优青。2005年、2008年分别获得济南大学的学士与硕士学位。2012年毕业于华南理工大学,获得工学博士学位。主要研究领域包括高性能水泥基材料、工业与建筑固废高效利用、水泥工业污染物减排等。在国内外重要期刊发表学术论文80余篇,申请或授权专利30余项。   
作者简介:  韩宇栋,中冶建筑研究总院有限公司高级工程师。2009年毕业于中国矿业大学(北京),获得学士学位。2014年毕业于清华大学土木工程系,获得工学博士学位。主要研究领域包括高性能水泥基复合材料、海洋环境下混凝土耐久性评价、功能水泥基材料等。发表论文30余篇。
引用本文:    
韩宇栋, 郭奕群, 李嘉豪, 张同生, 韦江雄, 余其俊. 高密实多元复合水泥浆体组成设计与抗侵蚀性能研究[J]. 材料导报, 2023, 37(3): 21080213-7.
HAN Yudong, GUO Yiqun, LI Jiahao, ZHANG Tongsheng, WEI Jiangxiong, YU Qijun. Design of a Densified Quadruple Blended Cement and Resistance to Ions Attacks. Materials Reports, 2023, 37(3): 21080213-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080213  或          http://www.mater-rep.com/CN/Y2023/V37/I3/21080213
1 Huang Y.Intelligent City, 2017, 3(1), 11 (in Chinese).
黄艳. 智能城市, 2017, 3(1), 11.
2 Zheng W, Chen W, Feng T, et al.Progress in Organic Coatings, 2020, 138, 105389.
3 Bryant M.Cement Concrete Composites, 2004, 26(1), 3.
4 Yuan Q, Shi C J, Schutter G D, et al.Construction and Building Mate-rials, 2009, 23(1), 1.
5 Feng W, Tarakbay A, Memon S A, et al.Construction and Building Materials, 2021, 289(2), 123165.
6 Wang Z P, Peng X, Zhao Y T, et al.Journal of the Chinese Ceramic So-ciety, 2019, 47(11), 1538 (in Chinese).
王中平, 彭相, 赵亚婷, 等. 硅酸盐学报, 2019, 47(11), 1538.
7 Tian W L. Chloride binding capacity of gap-graded blended cement and consequent corrosion resistance. Master's Thesis, South China University of Technology, China, 2019 (in Chinese).
田文立. 级配复合水泥氯离子固化能力及其抗侵蚀性能研究. 硕士学位论文, 华南理工大学, 2019.
8 Uysal M, Yilmaz K, Ipek M.Construction and Building Materials, 2012, 27(1), 263.
9 Hossain K, Lachemi M.Cement and Concrete Research, 2004, 34(4), 695.
10 Sheng J S, Lin Z, Cheng D, et al.Bulletin of the Chinese Ceramic Society, 2017, 36(7), 2186 (in Chinese).
盛建松, 林洲, 程笛, 等. 硅酸盐通报, 2017, 36(7), 2186.
11 Li P P, Su D G, Wang S N, et al.Port & Waterway Engineering, 2009(11), 6 (in Chinese).
黎鹏平, 苏达根, 王胜年, 等. 水运工程, 2009(11), 6.
12 Chen W, Zhu H, He Z, et al.Construction and Building Materials, 2021, 274, 121829.
13 Liu R G. Hydration mechanism and long-term performance of cement-slag complex cementitious materials. Ph.D. Thesis, Tsinghua University, China, 2013 (in Chinese).
刘仍光. 水泥-矿渣复合胶凝材料的水化机理与长期性能. 博士学位论文, 清华大学, 2013.
14 Radwan M K, Onn C C, Mo K H, et al.Engineering Sustainability, 2021, 174(1), 23.
15 Li J, Zhang W, Li C, et al. Journal of Cleaner Production, 2020, 261, 121224.
16 Wang Y S. The synergistic effect of nano-material with silica fume on impermeability of concrete. Master's Thesis, University of Jinan, China, 2018 (in Chinese).
王衍升. 纳米材料协同硅灰对混凝土抗渗性能的影响. 硕士学位论文, 济南大学, 2018.
17 Oltulu M, Sahin R.Construction and Building Materials, 2014, 53, 658.
18 Wild S, Khatib J, Roose L. Advances in Cement Research, 2015, 10(3), 109.
19 Al-ameeri A S, Rafiq M I, Tsioulou O.Cement and Concrete Composites, 2021, 115, 103819.
20 Park S, Kwon S, Jung S H.Construction and Building Materials, 2012, 29, 183.
21 Wang J, Cheng Y, Yuan L, et al.Construction and Building Materials, 2020, 247, 118529.
22 Zhang T S, Yu Q J, Wei J X, et al.Powder Technology, 2011, 214(2), 259.
23 Zhang T S, Yu Q J, Wei J X, et al. Cement and Concrete Composites, 2012, 34(5), 692.
24 Celik I B.Powder Technology, 2009, 188(3), 272.
25 Bentz D P, Hansen A S, Guynn J M.Cement and Concrete Composites, 2011, 33(6), 824.
26 Zhang P P, Wei J X, Zhang T S, et al.Advances in Cement Research, 2011, 23(6), 299.
27 Sotiriadis K, Nikolopoulou E, Tsivilis S.Cement and Concrete Composites, 2012, 34(8), 903.
28 Duan P, Shui Z H, Chen W, et al.Construction and Building Materials, 2013, 44, 1.
29 Zhou L X, Wang Q C, Zhang F Q.Journal of Hydroelectric Engineering, 2010, 29(3), 196 (in Chinese).
周立霞, 王起才, 张粉芹. 水力发电学报, 2010, 29(3), 196.
30 Chen L J.Journal of Wuhan University of Technology, 2007, 29(6), 50 (in Chinese).
陈立军. 武汉理工大学学报, 2007, 29(6), 50.
31 Chen L J, Wang Y P, Yin X S, et al.Journal of the Chinese Ceramic Society, 2005, 33(4), 500 (in Chinese).
陈立军, 王永平, 尹新生, 等. 硅酸盐学报, 2005, 33(4), 500.
32 Han Y M, Hong S K, Choi D S.Construction and Building Materials, 2006, 20(9), 725.
33 Guan B W, Liu J N, Wu J Y, et al.Bulletin of the Chinese Ceramic Society, 2020, 39(10), 3169 (in Chinese).
关博文, 刘佳楠, 吴佳育, 等. 硅酸盐通报, 2020, 39(10), 3169.
34 Guo Y Q, Zhang T S, Du J P, et al. Microporous and Mesoporous Mate-rials, 2021, 317, 111018.
35 Guo Y Q. Structure and composition design and properties of blended cement paste based on resistance to chloride ingress. Ph.D. Thesis, South China University of Technology, China, 2020 (in Chinese).
郭奕群. 基于抗氯离子侵蚀性能的复合水泥浆体的组成与结构设计及性能研究. 博士学位论文, 华南理工大学, 2020.
36 Korde C, Cruickshank M, Roger P W, et al.Construction and Building Materials, 2019, 216, 506.
37 Zhang T S, Yu Q J, Wei J X, et al.Journal of Thermal Analysis and Ca-lorimetry, 2012, 110(2), 1.
38 Bai J, Wild S, Sabir B B.Cement and Concrete Research, 2003, 33(3), 353.
39 Huang Q, Wang C, Zhao L, et al.Journal of Building Materials, 2019, 22(6), 978 (in Chinese).
黄谦, 王冲, 赵亮, 等. 建筑材料学报, 2019, 22(6), 978.
40 Zhang X J. The microstructure formation and evolution of C-S-H gel in cement paste under the attack of sulfate in weak alkaline. Master's Thesis, Anhui Jianzhu University, China, 2019 (in Chinese).
张晓佳. 弱碱环境下硫酸盐侵蚀水泥石中C-S-H凝胶结构的形成与演变. 硕士学位论文, 安徽建筑大学, 2019.
[1] 刘赞群, 周蕴婵, 胡文龙, 彭嘉伟. 半浸泡硫铝酸盐水泥混凝土蒸发区孔结构变化[J]. 材料导报, 2023, 37(3): 21080270-5.
[2] 渠亚男, 谢永江, 仲新华, 杨金龙. 利用多孔微球发泡法制备泡沫玻璃及其烧成工艺研究[J]. 材料导报, 2023, 37(1): 21050246-5.
[3] 黄时玉, 霍彬彬, 陈春, 张亚梅. 蒸养条件下偏高岭土对钢渣水泥基复合体系水化的影响[J]. 材料导报, 2022, 36(5): 21010187-6.
[4] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[5] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[6] 耿健智, 朱德举, 郭帅成, 易勇, 周琳林. 基于不同地域海砂的海水海砂混凝土力学性能试验研究[J]. 材料导报, 2022, 36(3): 21010189-8.
[7] 贾海林, 项海军, 郭明生, 赵万里, 赵晓举, 张民远, 于水军. 深热井巷热害隔离材料复配体系及性能研究[J]. 材料导报, 2022, 36(20): 21050031-10.
[8] 赵燕茹, 刘明, 王磊, 王志慧. 碳化高温后普通混凝土抗压强度及孔结构演化规律[J]. 材料导报, 2022, 36(19): 21050152-8.
[9] 郑敏, 杨瑾, 张华. 多孔金属材料的制备及应用研究进展[J]. 材料导报, 2022, 36(18): 20110092-16.
[10] 黄薇, 李红强, 官航, 冯海洋, 韦业, 古孜努尔·阿巴白克力, 赖学军, 曾幸荣. 天然木材的功能化及其应用进展[J]. 材料导报, 2022, 36(18): 20090093-7.
[11] 李克亮, 宋子明. 基于正交试验的拜耳法赤泥活化机理及性能分析[J]. 材料导报, 2022, 36(16): 21040130-7.
[12] 李东, 吴发超, 李瑞, 高彩云. 表面活性剂模板法构筑有序介孔三氧化钨及其光电化学水氧化性能[J]. 材料导报, 2022, 36(13): 21040241-6.
[13] 牛荻涛, 罗扬, 苏丽, 黄大观. 玄武岩-聚丙烯混杂纤维增强混凝土气孔结构分形分析[J]. 材料导报, 2022, 36(13): 20120198-6.
[14] 陈歆, 刘旭, 李立辉, 葛勇, 田波. 低气压成型的非引气水泥基材料水化与孔结构[J]. 材料导报, 2022, 36(12): 20100140-9.
[15] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思, 慕儒. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 2022, 36(12): 21010006-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed