Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21030025-8    https://doi.org/10.11896/cldb.21030025
  高分子与聚合物基复合材料 |
复合材料多层圆柱壳振动和声辐射问题研究进展
仝博, 李永清*, 张振海, 赵存生
海军工程大学舰船与海洋学院,武汉 430033
Research Advances on the Vibration and Sound Radiation of Composite Multilayer Cylindrical Shells
TONG Bo, LI Yongqing*, ZHANG Zhenhai, ZHAO Cunsheng
College of Naval Architecture and Ocean Engineering, Naval University of Engineering, Wuhan 430033, China
下载:  全 文 ( PDF ) ( 1833KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 鉴于复合材料优良的力学和声学性能,将其用于潜艇结构已成为未来的发展趋势和研究重点。而圆柱壳作为潜艇的主体结构形式,针对复合材料多层圆柱壳的振动和声辐射问题的研究已广泛开展。在满足水下承载能力的前提下,复合材料耐压圆柱壳趋于中厚壳,甚至厚壳,沿壳体厚度方向的横向剪切变形、压缩变形、截面翘曲变形不可忽略,这些因素直接决定了横向振动位移场描述的准确度,会进一步影响壳体周围声辐射场预报的准确性。现有的壳体理论主要有经典壳体理论、一阶剪切变形理论、高阶剪切变形理论、分层理论、锯齿理论和三维弹性理论等,这些理论发展比较成熟,但大多研究仍局限于正交各向异性薄壳结构的振动问题,涉及各向异性材料厚壳结构的声辐射研究较少,且目前对于这些壳体理论在复合材料圆柱壳的振动和声辐射问题的适用性方面缺乏系统的总结和研究。本文首先从复合材料的刚度特性出发说明其振动和声辐射问题求解的复杂性,然后从横向振动位移场的角度综述了这些理论的发展过程、研究现状以及各自的特点,最后给出了这些理论的适用范围和使用建议,并提出了有待进一步研究的问题,以期为复合材料多层圆柱壳结构的设计和振声性能分析提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仝博
李永清
张振海
赵存生
关键词:  复合材料  多层圆柱壳  位移场  振动  声辐射    
Abstract: The application of composite materials tothe submarine structure has become a development trend and research focus in the future due to the excellent mechanical and acoustic properties. For cylindrical shells as the main structure form of submarine, the research on vibration and sound radiation of composite laminated cylindrical shells has been widely carried out. Under the premise of meeting the underwater bearing capacity, the composite pressure cylindrical shell tends to be medium thick shell or even thick shell. In this situation, the transverse shear deformation, compression deformation and section warpage deformation along the thickness direction of the shell should not be ignored, for these factors have a direct impact on the accuracy of the description of the transverse vibration displacement field and the prediction of the sound radiation field around the shell. The existing shell theories mainly are classical shell theory, first-order shear deformation theory, high-order shear deformation theory, layer-wise theory, zig-zag theory and three-dimensional elastic theory, and these theories are relatively well developed. However, most of the studies are still limited to the vibration of orthotropic thin shell structures, and rarely involve the sound radiation of anisotropic thick shell structures. Furthermore, there is a lack of systematic summary and research on the applicability of these shell theories to the vibration and sound radiation of composite cylindrical shells. In this paper, the complexity of solving the vibration and sound radiation problems of composite materials is firstly explained based on the stiffness characteristics. Then, from the perspective of transverse vibration displacement field, the development process, research status and respective characteristics of these shell theories are summarized. Finally, the application scope and suggestions of these theories are given, some problems to be further studied are put forward and it is expected to provide references for the design and analysis of vibration and sound radiation of composite laminated cylindrical structures.
Key words:  composite material    multilayer cylindrical shell    displacement field    vibration    sound radiation
发布日期:  2023-02-08
ZTFLH:  U663.1  
  TB332  
基金资助: 国防预研基金项目(9140A14080914JB11044)
通讯作者:  *李永清,海军工程大学博士后、副教授,军委某部先进材料技术专业组专家,中国机械工程学会表面工程分会委员,中国复合材料学会船舶与海洋工程分会秘书,中国船舶力学学会新材料技术学组委员,舰船某型复合装甲技术责任人。2008 年毕业于海军工程大学舰船系并取得博士学位,主要从事舰船新型材料开发与应用,一直致力于舰船结构防护复合材料、隐身功能复合材料、深海耐压壳体复合材料等方面的研究。先后主持装备发展部“十三五”、“十四五”预研项目各1项、军科委基础加强课题1项、海军装备预研项目2项,主持军内科研项目5项,主持和参与军民融合重大专项及其他科研项目20余项,发表论文70余篇。   
作者简介:  仝博,2012年6月本科毕业于武汉理工大学交通学院,2018年12月在海军工程大学取得工学博士学位,现为海军工程大学舰船与海洋学院讲师。目前从事船舶复合材料结构振动和声辐射控制方面的研究。近年来,发表学术论文14篇,其中SCI和EI检索9篇。
引用本文:    
仝博, 李永清, 张振海, 赵存生. 复合材料多层圆柱壳振动和声辐射问题研究进展[J]. 材料导报, 2023, 37(2): 21030025-8.
TONG Bo, LI Yongqing, ZHANG Zhenhai, ZHAO Cunsheng. Research Advances on the Vibration and Sound Radiation of Composite Multilayer Cylindrical Shells. Materials Reports, 2023, 37(2): 21030025-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030025  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21030025
1 Liu J. Dual Use Technologies & Products, 2009(12), 3 (in Chinese).
刘娟. 军民两用技术与产品, 2009(12), 3.
2 Chen F, Qi G Y, Lai M, et al. Ship Science and Technology, 2014, 36(9), 153 (in Chinese).
陈峰, 齐国英, 赖鸣, 等. 舰船科学技术, 2014, 36(9), 153.
3 Wu S D. Shipbuilding Science and Technology, 2008(1), 20 (in Chinese).
吴始栋. 中外船舶科技, 2008(1), 20.
4 Li W Y, Wang S, Liu T, et al. Shipbuilding of China, 2016, 57(1), 210 (in Chinese).
李文跃, 王帅, 刘涛, 等. 中国造船, 2016, 57(1), 210.
5 Ni W B. Science News, 2018(1), 21(in Chinese).
倪伟波. 科学新闻, 2018(1), 21.
6 Wang X X, Zhang D T, Qian K, et al.Acta Materiae Compositae Sinica, 2020, 37(1), 16(in Chinese).
王晓旭, 张典堂, 钱坤, 等. 复合材料学报, 2020, 37(1), 16.
7 Zhou W X. Research of structural characteristics on a new kind submerged pressure hull and ship hull composed by composite material. Master's Thesis, Huazhong University of Science & Technology, China, 2015(in Chinese).
周维新. 复合材料新型水下耐压壳及船舶结构特性研究. 硕士学位论文, 华中科技大学, 2015.
8 Chen Z J, Xia Q Q, Ai H F. Noise and Vibration Control, 2012, 32(2), 1(in Chinese).
陈志坚, 夏齐强, 艾海峰. 噪声与振动控制, 2012, 32(2), 1.
9 Zou M S, Wu Y S. Advances in Mechanics, 2017, 47(1), 385(in Chinese).
邹明松, 吴有生. 力学进展, 2017, 47(1), 385.
10 Zhang C Y, Jin G Y, Ma X L, et al. Applied Acoustics, 2016, 110, 176.
11 Li B, Zhang C. Ship Science and Technology, 2015, 37(2), 14(in Chinese).
李兵, 张超. 舰船科学技术, 2015, 37(2), 14.
12 Zhou Q, Joseph P F. Journal of Sound and Vibration, 2005, 283, 853.
13 Xie T Y, Wang Y S, Fu J, et al. Journal of Wuhan University of Techno-logy(Transportation Science & Engineering), 2013, 37(4), 878(in Chinese).
谢天宇, 王永生, 付建, 等. 武汉理工大学学报(交通科学与工程版), 2013, 37(4), 878.
14 Xie K, Chen M, Li Z. Thin-Walled Structures, 2017, 111, 126.
15 Shu X P. Journal of Huaihai Institute of Technology, 2000, 9(3), 9(in Chinese).
舒小平. 淮海工学院学报, 2000, 9(3), 9.
16 Guo Y P. Journal of the Acoustical Society of America, 1996, 99(3), 1495.
17 Yin X W. Study on vibration and acoustic radiation from (laminated composite) cylindrical shells. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2008(in Chinese).
殷学文. (多层复合)圆柱壳体的振动和声辐射研究. 博士学位论文, 上海交通大学, 2008.
18 Anoosheiravan F H. International Journal of Mechanics and Applications, 2012, 2 (5), 74.
19 Werner Sodel. Vibrations of shells and plates, Marcel Dekker Inc Press, America, 2004.
20 Hemmatnezhad M, Rahimi G H. Composite Structures, 2015, 120, 509.
21 Sang K L, Myung W K, Chul J P, et al. International Journal of Mechanical Sciences, 2016, 117, 162.
22 Xiao H L, Liu S, Zhang T, et al. Noise and Vibration Control, 2005, 25(6), 4(in Chinese).
肖汉林, 刘土光, 张涛, 等. 噪声与振动控制, 2005, 25(6), 4.
23 Tran I T, Manh C N. Applied Mathematical Modelling, 2016, 40, 9286.
24 Tan A Q, Liu J X, Li T Y, et al. Journal of Ship Mechanics, 2017, 21(8), 1035 (in Chinese).
谭安全, 刘敬喜, 李天匀, 等. 船舶力学, 2017, 21(8), 1035.
25 Timoshenko S, Woinowsky K S. Theory of plates and shells, Mcgraw-Hill College Press, America, 1959.
26 Cao X T, Hua H X, Ma C. Journal of Sound and Vibration, 2012, 331, 651.
27 Täger O, Dannemann M, Hufenbach W A. Journal of Sound and Vibration, 2015, 342, 57.
28 Tang D, Yao X L, Jin Y Q, et al. Applied Ocean Research, 2016, 61, 65.
29 Wang Q S, Shao D, Qin B. Composite Structures, 2018, 184, 211.
30 Zhai Y C, Chai M J, Su J M, et al. Composite Structures, 2018, 189, 148.
31 Cao X T. Vibrational and acoustic prediction method of laminated plates and shells. Ph. D. Thesis, Shanghai Jiao Tong University, China, 2012(in Chinese).
曹雄涛. 层合板壳振动和声辐射预测方法. 博士学位论文, 上海交通大学, 2012.
32 Yin X W, Liu L J, Hua H X, et al. Journal of Vibration and Acoustics, 2009, 131(1), 011005.
33 Mohamad S, Qatu, Rani W S, et al. Composite Structures, 2010, 93, 14.
34 Reddy J N. Journal of Applied Mechanics, 1984, 51(4), 745.
35 Garg A K, Khare R K, Kant T. Journal of Sandwich Structures and Materials, 2006, 8, 205.
36 Lam K Y, Ng T Y, Qian W. AIAA Journal, 1999, 38(6), 1102.
37 Reddy J N, Robbins D. Applied Mechanics Reviews, 1994, 47(6), 147.
38 Li X Y, Yu K P, Zhao R, et al. Composite Structures, 2015, 124, 111.
39 Rahmani O, Khalili S M R, Malekzadeh K. Composite Structures, 2010, 92(5), 1269.
40 Khalili S M R, Davar A, Fard K M. International Journal of Mechanical Sciences, 2012, 56(1), 1.
41 Cao X T, Hua H X, Xin W. Archive of Applied Mechanics, 2014, 84, 1015.
42 Zhang Y, Xiang J W. Acta Materiae Compositae Sinica, 2002, 19(4), 86(in Chinese).
张雨, 向锦武. 复合材料学报, 2002, 19(4), 86.
43 Loy C T, Lam K Y. Journal of Sound and Vibration, 1999, 226(4), 719.
44 Reissner E. International Journal for Numerical Methods in Engineering, 1986, 23(2), 193.
45 Carrera E. Archives of Computational Methods in Engineering, 2003, 10(3), 215.
46 Boscolo M. Composite Structures, 2013, 100, 493.
47 Dannemann M, Täger O, Modler N. Journal of Sound and Vibration, 2017, 404, 1.
48 Akoussan K, Hamdaoui M, Daya E M. Composite Structures, 2017, 176, 342.
49 Yang S H, Wang A W. Engineering Mechanics, 2008, 25(3), 38(in Chinese).
杨少红, 王安稳. 工程力学, 2008, 25(3), 38.
50 Yuan H P. Acoustic radiation characteristics analysis and measure of laminated composite plates. Master's Thesis, Nanchang Hangkong University, China, 2014(in Chinese).
原海朋. 复合材料层合板声辐射特性分析与测量. 硕士学位论文, 南昌航空大学, 2014.
51 Wu J W, Zhao L S, Huang L Z. Journal of Mechanical Engineering, 2014, 50(3), 116(in Chinese).
吴锦武, 赵龙胜, 黄凌志. 机械工程学报, 2014, 50(3), 116.
52 Wu J W, Peng W H, Zhao F. Journal of Vibration and Shock, 2015, 34(16), 85(in Chinese).
吴锦武, 彭文辉, 赵飞. 振动与冲击, 2015, 34(16), 85.
53 Wu J W, Zhao F, Wang X W, et al. Technical Acoustics, 2016, 35(2), 155(in Chinese).
吴锦武, 赵飞, 王县委, 等. 声学技术, 2016, 35(2), 155.
54 Wu J W, Yuan H P. Journal of Mechanical Engineering, 2016, 52(19), 73(in Chinese).
吴锦武, 原海朋. 机械工程学报, 2016, 52(19), 73.
55 Yang Z X. Vibro-acoustic analysis and optimum design of composite structures with viscoelastic core. Master's Thesis, Huazhong University of Science and Technology, China, 2019(in Chinese).
杨智雄. 夹芯复合材料结构振声特性分析及优化设计. 硕士学位论文, 华中科技大学, 2019.
56 Sui X D, Ren X H, Qin Z Q, et al. Chinese Journal of Computational Mechanics, 2016, 33(1), 39(in Chinese).
隋晓东, 任晓辉, 勤政琪, 等. 计算力学学报, 2016, 33(1), 39.
57 Carrera E. Computers and Structures, 2004, 82, 541.
58 Carrera E. Archives of Computational Methods in Engineering, 2002, 9(2), 87.
59 Talebitooti R, Zarastvand M R. Aerospace Science and Technology, 2018, 75, 227.
60 Yang S Q, Zhang Y C, Liu S T. Acta Aeronautica et Astronautica Sinica, 2019, 40(11), 134(in Chinese).
杨胜奇, 张永存, 刘书田. 航空学报, 2019, 40(11), 134.
61 Ren X H. C0-type higher-order zig-zag theory for laminated composite plates. Ph. D. Thesis, Dalian University of Technology, China, 2014(in Chinese).
任晓辉. 复合材料层合板C0型高阶锯齿理论. 博士学位论文, 大连理工大学, 2014.
62 Di Sciuva M. Journal of Sound and Vibration, 1986, 105(3), 425.
63 Cho M, Kim K O, Kim M H. Composite Structures, 1996, 34, 197.
64 Ren X H, Chen W J. Chinese Journal of Computational Mechanics, 2015, 32(1), 77(in Chinese).
任晓辉, 陈万吉. 计算力学学报, 2015, 32(1), 77.
65 Ren X H, Chen W J. Engineering Mechanics, 2012, 29(2), 34(in Chinese).
任晓辉, 陈万吉. 工程力学, 2012, 29(2), 34.
66 KumarA, Chakrabarti A, Bhargava P. Engineering Structures, 2013, 56, 880.
67 Qu Y G, Meng G. Composite Structures, 2015, 134, 689.
68 Soldatos K P, Ye J Q. Journal of Sound and Vibration, 1995, 184(2), 245.
69 Ye J Q. Composite Structures, 1997, 38 (1-4), 151.
70 Ye J Q. Composite Structures, 2001, 52, 247.
71 Kapuria S, Kumari P. Composite Structures, 2010, 92, 2431.
72 Qu Y G, Guang M. European Journal of Mechanics A/Solids, 2014, 44, 222.
73 Qu Y G, Guang M. European Journal of Mechanics A/Solids, 2014, 44, 234.
74 Okhovat R, Boström A. Composite Structures, 2018, 184, 1197.
75 Santos H, Soares C M M, Soares C A M, et al. Composite Structures, 2006, 75, 170.
76 Santos H, Soares C, Soares C A M, et al. Computers and Structures, 2008, 86, 940.
77 Saviz M R, Mohammadpourfard M. Finite Elements in Analysis and Design, 2010, 46, 770.
78 Talebitooti R, Ahmadi R, Shojaeefard M H. Composite Structures, 2015, 132, 239.
79 Liu D Y, Kitipornchai S, Chen W Q, et al. Composite Structures, 2018, 189, 560.
80 Khezri M, Gharib M, Bradford M A, et al. Computers and Structures, 2015, 158, 225.
81 Liu Y H, Wang B H, Qing G H. Engineering Mechanics, 2012, 29(7), 347(in Chinese).
刘艳红, 王炳华, 卿光辉. 工程力学, 2012, 29(7), 347.
82 Ye J Q, Soldatos K P. Composites Engineering, 1994, 4(4), 429.
83 Tong B, Li Y Q, Zhu X, et al. Acta Materiae Compositae Sinica, 2019, 36(5), 1159(in Chinese).
仝博, 李永清, 朱锡, 等. 复合材料学报, 2019, 36(5), 1159.
84 Tong B, Li Y Q, Zhu X, et al. Acta Acustica, 2020, 45(3), 415(in Chinese).
仝博, 李永清, 朱锡, 等. 声学学报, 2020, 45(3), 415.
85 Chen W Q, Bian Z G, Ding H J. International Journal of Mechanical Sciences, 2004, 46, 159.
86 Liu X W, Liang B. Journal of Henan University of Science and Technology(Natural Science), 2014, 35(2), 62(in Chinese).
刘小宛, 梁斌. 河南科技大学学报:自然科学版, 2014, 35(2), 62.
87 Loy C T, Lam K Y. International Journal of Mechanical Sciences, 1996, 35( 4), 455.
88 Tang D, Yao X, Wu G, et al. Thin-Walled Structures, 2017, 116, 154.
89 Tong B, Li Y Q, Zhu X, et al. Applied Acoustics, 2019, 146, 390.
90 Gan L, Li X, Zhang Z. Journal of Sound and Vibration, 2009, 326, 633.
91 Wang Z Q, Huang L H, Li X B. Ship Science and Technology, 2017, 39(4), 24(in Chinese).
汪志强, 黄利华, 李学斌. 舰船科学技术, 2017, 39(4), 24.
[1] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[2] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[3] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[4] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[5] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[6] 相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
[7] 余国卿, 许永康, 王东亮, 牛勇, 司明达, 张茂, 龚攀, 王新云. 陶瓷颗粒增强Zr基非晶合金复合材料高温变形行为研究[J]. 材料导报, 2023, 37(1): 21110013-7.
[8] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[9] 程平, 彭勇, 汪馗, 姚松, 刘志祥. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 22010088-6.
[10] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[11] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[12] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[13] 吴青山, 赵鹏程, 刘志启, 周自圆, 李娜, 莫云泽. 镁铝水滑石的制备与应用研究[J]. 材料导报, 2022, 36(Z1): 22030128-8.
[14] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[15] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed