Please wait a minute...
材料导报  2023, Vol. 37 Issue (2): 21030055-8    https://doi.org/10.11896/cldb.21030055
  高分子与聚合物基复合材料 |
亚铁离子荧光探针研究进展
李佳佳1, 张瑞龙1,*, 张忠平2
1 安徽大学化学化工学院,合肥 230601
2 安徽大学物质科学与信息技术研究院,合肥 230601
Research Progress of Ferrous Ion Fluorescent Probe
LI Jiajia1, ZHANG Ruilong1,*, ZHANG Zhongping2
1 School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China
2 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
下载:  全 文 ( PDF ) ( 5565KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铁作为生物体内最丰富的过渡金属元素,与生命体的新陈代谢息息相关,而且铁元素主要以亚铁离子(Fe2+) 的形式存在于细胞内。体内Fe2+含量的失调与贫血症、癌症和心血管疾病等多种病症的发生和发展有着直接的联系。因此,监测生命体内Fe2+的浓度是评估人体健康状况的重要手段。在诸多Fe2+的检测方法中,荧光检测法因操作快速、简便并可用于体内/体外实时监测等最具发展前景。
然而,在荧光检测法中探针的设计与筛选至关重要。传统的荧光探针面临的最大问题是特异性,即对Fe2+的响应常常会受到其他金属离子(如钙离子、镁离子和钾离子等)的干扰。因此,为了适用于监测生物系统中Fe2+浓度,设计出特异性强、光稳定性好、灵敏度高、检测限低和生物相容性优良的荧光探针具有重要的意义。
现阶段,Fe2+荧光探针主要分为两大类:有机小分子和纳米材料,其机理主要可分为三种:(1)还原N-O类化合物;(2)与Fe2+螯合;(3)利用Fe2+与荧光探针发生特异性反应(如Fenton反应、选择性断裂酰胺或羟胺键等)。
本文主要归纳总结了近十几年Fe2+荧光探针的研究进展,包括制备方法、作用机理和在生命系统中检测Fe2+的应用进展。最后,对如何进一步优化Fe2+荧光探针的发光性质、检测限和特异性提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李佳佳
张瑞龙
张忠平
关键词:  亚铁离子  荧光探针  识别  生物成像    
Abstract: Ferrous ion (Fe2+), as the most abundant iron element in living organisms, is closely related to the metabolism in live organisms. The abnormal Fe2+ levels involve in the occurrence and development of various diseases such as anemia, cancer and cardiovascular diseases. Therefore, the monitoring of Fe2+ fluctuation in living systems is of great significance to evaluate human health. Among of the several Fe2+ detection approaches, fluorescence method is widely employed due to its easy operation and on-site capability in vivo/in vitro.
Design and screening of fluorescent probes play key roles in fluorescence detection. However, a typical difficulty of the traditional fluorescent probes is how to avoid the interference from other metal ions (such as calcium, magnesium and potassium). Thus, the designs of fluorescent probes with excellent specificity, photostability, sensitivity and biocompatibility have been devoted by scientists.
According the materials of probes, they are always classified into organic molecular probes and nano probes. In parallel, the probes included three reaction mechanisms for detecting Fe2+: (1) reduction of NO groups;(2) chelation with Fe2+;(3) specifical reaction with Fe2+ (for example: Fenton reaction, selective cleavage of amide or hydroxylamine bonds, etc.).
Here, we have summarized the research progress of Fe2+ fluorescent probes in the past decade, including synthesis methods, detection mechanism and bio-application progress. We envision the further optimization of the luminescence property, detection limit and specificity of fluorescent probe.
Key words:  ferrous ion    fluorescent probe    identification    bioimaging
发布日期:  2023-02-08
ZTFLH:  O657.3  
基金资助: 国家自然科学基金(21705001; 21775001)
通讯作者:  *张瑞龙,安徽大学化学化工学院副教授、硕士研究生导师。2016年毕业于中国科学技术大学,取得博士学位。研究方向为荧光探针与细胞成像——通过多响应型单分子荧光探针研究细胞内不同生物分子之间的相互关联性。曾在Journal of the American Chemical Society、Angewandte Chemie International Edition、Analytical Chemistry 等杂志发表多篇学术论文。目前主持国家自然科学基金面上和青年项目各一项。   
作者简介:  李佳佳,2019年7月毕业于安徽师范大学,获得工学学士学位。现为安徽大学化学化工学院硕士研究生,在张忠平研究员和张瑞龙副教授的指导下进行研究。目前主要研究领域为碳点在荧光成像上的应用。
引用本文:    
李佳佳, 张瑞龙, 张忠平. 亚铁离子荧光探针研究进展[J]. 材料导报, 2023, 37(2): 21030055-8.
LI Jiajia, ZHANG Ruilong, ZHANG Zhongping. Research Progress of Ferrous Ion Fluorescent Probe. Materials Reports, 2023, 37(2): 21030055-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030055  或          http://www.mater-rep.com/CN/Y2023/V37/I2/21030055
1 Theil E C, Goss D J. Chemical Reviews, 2009, 109(10), 4568.
2 Hentze M W, Muckenthaler M U, Galy B, et al. Cell, 2010, 142(1), 24.
3 Kaplan C D, Kaplan J. Chemical Reviews, 2009, 109(10), 4536.
4 Breuer W, Shvartsman M, Cabantchik Z I. The International Journal of Biochemistry & Cell Biology, 2008, 40(3), 350.
5 Biaglow J E, Kachur A V. Radiation Research, 1997, 148(2), 181.
6 Ganz T, Physiological Reviews, 2013, 93(4), 1721.
7 Kakhlon O, Cabantchik Z I. Free Radical Biology and Medicine, 2002, 33(8), 1037.
8 Puntarulo S. Molecular Aspects of Medicine, 2005, 26(4), 299.
9 von Haehling S, Jankowska E A, van Veldhuisen D J, et al. Nature Reviews Cardiology, 2015, 12(11), 659.
10 Torti S V, Torti F M. Nature Reviews Cancer, 2013, 13(5), 342.
11 Liu T, Liu W, Zhang M, et al. ACS Nano, 2018, 12(12), 12181.
12 Domaille D W, Que E L, Chang C J. Nature Chemical Biology, 2008, 4(3), 168.
13 Hider R C, Kong X L. BioMetals, 2011, 24(6), 1179.
14 Sahoo S K, Sharma D, Bera R K, et al. Chemical Society Reviews, 2012, 41(21), 7195.
15 Au-Yeung H Y, Chan J, Chantarojsiri T, et al. Journal of the American Chemical Society, 2013, 135(40), 15165.
16 Hirayama T, Okuda K, Nagasawa H. Chemical Science, 2013, 4(3), 1250.
17 Niwa M, Hirayama T, Okuda K, et al. Organic & Biomolecular Chemistry, 2014, 12(34), 6590.
18 Hirayama T, Tsuboi H, Niwa M, et al. Chemical Science, 2017, 8(7), 4858.
19 Niwa M, Hirayama T, Oomoto I, et al. ACS Chemical Biology, 2018, 13(7), 1853.
20 Hirayama T, Kadota S, Niwa M, et al. Metallomics, 2018, 10(6), 794.
21 Khatun S, Biswas S, Binoy A, et al. Journal of Photochemistry and Photobiology B: Biology, 2020, 209, 111943.
22 Zheng J, Feng S, Gong S, et al. Sensors and Actuators B: Chemical, 2020, 309, 127796.
23 Yang X, Wang Y, Liu R, et al. Sensors and Actuators B: Chemical, 2019, 288, 217.
24 Chen J L, Zhuo S J, Wu Y Q, et al. Spectrochimica Acta Part A: Mole-cular and Biomolecular Spectroscopy, 2006, 63(2), 438.
25 Zhang X, Chen Y, Cai X, et al. Dyes and Pigments, 2020, 174, 108065.
26 Li P, Fang L, Zhou H, et al. Chemistry-A European Journal, 2011, 17(38), 10520.
27 Petrat F, Weisheit D, Lensen M, et al. Biochemical Journal, 2002, 362(Pt 1), 137.
28 Rauen U, Springer A, Weisheit D, et al. ChemBioChem, 2007, 8(3), 341.
29 Praveen L, Reddy M L P, Varma R L. Tetrahedron Letters, 2010, 51(50), 6626.
30 García-Beltrán O, Mena N, Yañez O, et al. European Journal of Medicinal Chemistry, 2013, 67, 60.
31 Ravichandiran P, Boguszewska-Czubara A, Masłyk M, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(20), 17210.
32 Santhoshkumar S, Velmurugan K, Prabhu J, et al. Inorganica Chimica Acta, 2016, 439, 1.
33 Hou G G, Wang C H, Sun J F, et al. Biochemical and Biophysical Research Communications, 2013, 439(4), 459.
34 Guan J, Tu Q, Chen L, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 220, 117114.
35 Xuan W, Pan R, Wei Y, et al. Bioconjugate Chemistry, 2016, 27(2), 302.
36 Aron A T, Heffern M C, Lonergan Z R, et al. Proceedings of the National Academy of Sciences, 2017, 114(48), 12669.
37 Long L, Wang N, Han Y, et al. Analyst, 2018, 143(11), 2555.
38 Spangler B, Morgan C W, Fontaine S D, et al. Nature Chemical Biology 2016, 12 (9), 680.
39 Aron A T, Loehr M O, Bogena J, et al. Journal of the American Chemical Society, 2016, 138(43), 14338.
40 Liu Z, Wang S, Li W, et al. Analytical Chemistry, 2018, 90(4), 2816.
41 Liu G, Li B, Liu Y, et al. Applied Surface Science, 2019, 487, 1167.
42 Lin X, Xuan D, Li F, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117894.
43 Chen T, Yang F, Wu X, et al. Carbon, 2020, 167, 196.
44 Yang S, Jiang Z, Chen Z, et al. Microchimica Acta, 2015, 182(11), 1911.
45 Mo Q, Jia M, Zhuang P, et al. Analytical Methods, 2019, 11(7), 936.
[1] 万林林, 周启明, 邓朝晖. 工程陶瓷磨削过程的声发射在线监测研究进展[J]. 材料导报, 2023, 37(4): 21050196-11.
[2] 刘凯伟, 刘琦牮, 李骏, 余映红, 卿新林. 基于FBG传感器和卷积神经网络的复合材料结构载荷识别研究[J]. 材料导报, 2023, 37(1): 21040290-7.
[3] 丁梅鹃, 史慧芳, 安众福. 有机室温磷光材料在生物医学中的应用[J]. 材料导报, 2022, 36(3): 22010004-11.
[4] 龚梦芸, 李爽, 王松, 李望南, 程晓红. 基于聚合物的亚硫酸氢根比率荧光探针及其在食品检测中的应用[J]. 材料导报, 2022, 36(19): 21050279-4.
[5] 初红涛, 尹杰, 林清, 隋秉蓉, 谭金铭, 苏立强, 马文辉. 镧系金属-有机框架材料作为荧光探针的研究进展[J]. 材料导报, 2022, 36(16): 20060292-8.
[6] 李静芝, 高志贤, 李双, 赵旭东, 秦英凯, 刘辉, 韩铁. 上转换纳米颗粒的发光机理、制备及生物应用进展[J]. 材料导报, 2022, 36(14): 20110168-11.
[7] 张永志, 李旭英, 辛全忠, 孔祥明, 王永亮. 自组织CNN建模识别耐热钢金相组织研究[J]. 材料导报, 2022, 36(12): 21030032-6.
[8] 马思阳, 张晓琳, 宫蕾, 詹世平, 侯维敏, 卢春兰. 基于AIE特性的有机小分子和聚合物的应用进展[J]. 材料导报, 2021, 35(Z1): 566-570.
[9] 张永志, 辛全忠, 王永亮, 孔祥明, 刘昉, 杨再胜. 基于迁移学习的钢金相组织分类与识别方法的研究[J]. 材料导报, 2021, 35(24): 24152-24157.
[10] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[11] 杨璐, 王泽方. 氮化硼量子点的制备及应用综述[J]. 材料导报, 2021, 35(1): 1058-1076.
[12] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[13] 初红涛, 姚冬, 陈嘉琪, 于淼. 金属有机骨架材料作为荧光探针的研究进展[J]. 材料导报, 2020, 34(13): 13114-13120.
[14] 刘文, 李婷婷, 张冰, 张荣, 刁海鹏, 常宏宏, 魏文珑. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报, 2019, 33(3): 402-409.
[15] 赵秋丽, 卞洁鹏, 杨庆浩, 彭龙贵, 王志华, 后振中, 李颖. 聚集诱导发红光材料在生物成像领域的应用[J]. 材料导报, 2019, 33(3): 522-535.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed