NH3-SCR Performance of V2O5-MoO3/TiO2 Catalyst: Effect of Support
SONG Liyun1,*, DENG Shilin1, ZHOU Yiyun1, LI Shuangye1, ZHAN Zongcheng2,*, LI Jian1, HE Hong1
1 Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China 2 Qingdao HuaShiJie Environmental Protection Technology Co., Ltd., Qingdao 266510, Shandong, China
Abstract: A series of V-Mo/TiO2 catalysts were prepared by the impregnation method. The influence of crystal structure (rutile phase, anatase phase and the mixed phase of the two phases) and the average particle size of the TiO2 support on NH3-SCR performance of catalyst were mainly investigated. The physical and chemical properties and structure of the catalyst were characterized by SEM, XRD,Raman, BET, H2-TPR, NH3-TPD and other methods. The results show that the catalyst with smaller average particle size has a high specific surface area and pore volume, which is beneficial to the loading and deposition of the active component VOx, giving improvement of the denitration performance of the catalyst. The V-Mo/Ti-A1 catalyst with anatase crystal support has the best NH3-SCR performance due to its excellent specific surface area, redox capacity and abundant acid sites. At the same time, the activity of the mixed crystal support V-Mo/Ti-P25 catalyst is close to 100% in the temperature range of 180—320 ℃.
1 Liu C, Chen L, Li J H, et al. Environmental Science & Technology, 2012, 46(11), 6182. 2 Xin Y, Zhang N N, Li Q, et al. Applied Catalysis B: Environmental, 2018, 229, 81. 3 Yang Z H, Zhang X M, Yang Z J, et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2023, 40(1), 1(in Chinese). 杨哲涵, 张贤明, 杨镇嘉, 等. 重庆工商大学学报(自然科学版), 2023, 40(1), 1. 4 Paolucci C, Khurana I, Parekh A A, et al. Science, 2017, 357(6354), 898. 5 He H, Wang Y S, Ma Q X, et al. Scientific Reports, 2014, 4, 4172. 6 Kampa M, Castanas E. Environmental Pollution, 2008, 151(2), 362. 7 Xin Y, Zhang N N, Li Q, et al. ACS Catalysis, 2018, 8(2), 1399. 8 Chang H Z, Chen X Y, Li J H, et al. Environmental Science & Technology, 2013, 47(10), 5294. 9 Ding S P, Liu F D, Shi X Y, et al. ACS Applied Mater & Interfaces, 2015, 7(18), 9497. 10 Shan W P, Liu F D, He H, et al. ChemCatChem, 2011, 3(8), 1286. 11 Yao X J, Zhao R D, Chen L, et al. Applied Catalysis B: Environmental, 2017, 208, 82. 12 Buchalska M, Kobielusz M, Matuszek A, et al. ACS Catalysis, 2015, 5(12), 7424. 13 Falah M, MacKenzie K J D. Ceramics International, 2015, 41(10), 13702. 14 Wang F, Xu T R, Wu H, et al. Journal of Combustion Science and Technology, 2021, 27(2), 216(in Chinese). 王峰, 徐婷睿, 武浩, 等. 燃烧科学与技术, 2021, 27(2), 216. 15 Wu Y X, Liang H L, Chen X, et al. Materials Reports, 2021, 35(6), 6020(in Chinese). 吴彦霞, 梁海龙, 陈鑫, 等. 材料导报, 2021, 35(6), 6020. 16 Zhao J, Wang Y, Li Y X, et al. Catalysis Science & Technology, 2016, 6(22), 7967. 17 Kaplan R, Erjavec B, Drazic G, et al. Applied Catalysis B: Environmental, 2016, 181, 465. 18 Liu L J, Zhao H L, Andino J M, et al. ACS Catalysis, 2012, 2(8), 1817. 19 Yao X J, Zhang L, Li L L, et al. Applied Catalysis B: Environmental, 2014, 150, 315. 20 Wan Y J, Tian J Q, Qian G, et al. Green Chemical Engineering, DOI:10. 1016/j. gce. 2021. 03. 002. 21 Ramis G, Busca G, Bregani F, et al. Applied Catalysis, 1990, 64, 259. 22 Li M Y, Guo R T, Hu C X, et al. Applied Surface Science, 2018, 436, 814. 23 Tang F S, Xu B L, Shi H H, et al. Applied Catalysis B:Environmental, 2010, 94(1), 71. 24 Li Z Y, Tang Q, Zuo Z H, et al. Industrial Catalysis, 2016, 24(7), 41(in Chinese). 李泽英, 唐清, 左赵宏, 等. 工业催化, 2016, 24(7), 41. 25 Chen P R, Jabłon'ska M, Weide P, et al. ACS Catalysis, 2016, 6(11), 7696. 26 Tian J Q, Li Y Q, Zhou X, et al. Chinese Journal of Chemical Engineering, 2020, 28 (7), 1925. 27 Shen B X, Ma J, Hu G L, et al. Journal of Fuel Chemistry and Technology, 2012, 40(11), 1372(in Chinese). 沈伯雄, 马娟, 胡国丽, 等. 燃料化学学报, 2012, 40(11), 1372.