Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21080131-6    https://doi.org/10.11896/cldb.21080131
  无机非金属及其复合材料 |
V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响
宋丽云1,*, 邓世林1, 周宜芸1, 李双叶1, 展宗城2,*, 李坚1, 何洪1
1 北京工业大学区域大气复合污染防治北京市重点实验室,北京 100124
2 青岛华世洁环保科技有限公司,山东 青岛 266510
NH3-SCR Performance of V2O5-MoO3/TiO2 Catalyst: Effect of Support
SONG Liyun1,*, DENG Shilin1, ZHOU Yiyun1, LI Shuangye1, ZHAN Zongcheng2,*, LI Jian1, HE Hong1
1 Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, China
2 Qingdao HuaShiJie Environmental Protection Technology Co., Ltd., Qingdao 266510, Shandong, China
下载:  全 文 ( PDF ) ( 8920KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用浸渍法制备了一系列V-Mo/TiO2催化剂,主要考察了TiO2载体的晶型结构(金红石相、锐钛矿相以及两者混合相)和平均颗粒尺寸对催化剂NH3-SCR性能的影响,并利用SEM、XRD、Raman、BET、H2-TPR、NH3-TPD等方法对催化剂的理化性质及结构进行了表征。结果表明:平均颗粒尺寸较小的催化剂拥有高比表面积和孔容积,有利于活性组分VOx的负载和沉积,从而有利于催化剂脱硝性能的提升。锐钛矿晶型载体的V-Mo/Ti-A1催化剂因拥有优异的比表面积、氧化还原能力和丰富的酸性位点而具有最佳的脱硝性能;同时混合晶型载体的V-Mo/Ti-P25催化剂在180~320 ℃的脱硝活性接近100%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋丽云
邓世林
周宜芸
李双叶
展宗城
李坚
何洪
关键词:  催化剂  锐钛矿  金红石  NH3-SCR    
Abstract: A series of V-Mo/TiO2 catalysts were prepared by the impregnation method. The influence of crystal structure (rutile phase, anatase phase and the mixed phase of the two phases) and the average particle size of the TiO2 support on NH3-SCR performance of catalyst were mainly investigated. The physical and chemical properties and structure of the catalyst were characterized by SEM, XRD,Raman, BET, H2-TPR, NH3-TPD and other methods. The results show that the catalyst with smaller average particle size has a high specific surface area and pore volume, which is beneficial to the loading and deposition of the active component VOx, giving improvement of the denitration performance of the catalyst. The V-Mo/Ti-A1 catalyst with anatase crystal support has the best NH3-SCR performance due to its excellent specific surface area, redox capacity and abundant acid sites. At the same time, the activity of the mixed crystal support V-Mo/Ti-P25 catalyst is close to 100% in the temperature range of 180—320 ℃.
Key words:  catalyst    anatase    rutile    NH3-SCR
发布日期:  2023-03-27
ZTFLH:  X511  
基金资助: 国家自然科学基金青年基金(21806005)
通讯作者:  *宋丽云,北京工业大学讲师,2009年毕业于内蒙古工业大学化学工程与工艺专业,获工学学士学位;2014年毕业于北京工业大学应用化学专业,获工学博士学位,同年加入北京工业大学大气污染控制工程研究室工作至今,主要从事大气污染物催化脱除技术研究,已发表学术论文30余篇,获授权国家发明专利10余项。songly@bjut.edu.cn;
展宗城,高级工程师,青岛华世洁环保科技有限公司研究所所长,主要从事环境催化材料的研究与应用。2008年毕业于兰州交通大学市政工程专业,获工学硕士学位;2013年毕业于北京工业大学应用化学专业,获工学博士学位。已发表学术论文10余篇,获授权国家发明专利10余项。biyu340@163.com   
引用本文:    
宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
SONG Liyun, DENG Shilin, ZHOU Yiyun, LI Shuangye, ZHAN Zongcheng, LI Jian, HE Hong. NH3-SCR Performance of V2O5-MoO3/TiO2 Catalyst: Effect of Support. Materials Reports, 2023, 37(6): 21080131-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080131  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21080131
1 Liu C, Chen L, Li J H, et al. Environmental Science & Technology, 2012, 46(11), 6182.
2 Xin Y, Zhang N N, Li Q, et al. Applied Catalysis B: Environmental, 2018, 229, 81.
3 Yang Z H, Zhang X M, Yang Z J, et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2023, 40(1), 1(in Chinese).
杨哲涵, 张贤明, 杨镇嘉, 等. 重庆工商大学学报(自然科学版), 2023, 40(1), 1.
4 Paolucci C, Khurana I, Parekh A A, et al. Science, 2017, 357(6354), 898.
5 He H, Wang Y S, Ma Q X, et al. Scientific Reports, 2014, 4, 4172.
6 Kampa M, Castanas E. Environmental Pollution, 2008, 151(2), 362.
7 Xin Y, Zhang N N, Li Q, et al. ACS Catalysis, 2018, 8(2), 1399.
8 Chang H Z, Chen X Y, Li J H, et al. Environmental Science & Technology, 2013, 47(10), 5294.
9 Ding S P, Liu F D, Shi X Y, et al. ACS Applied Mater & Interfaces, 2015, 7(18), 9497.
10 Shan W P, Liu F D, He H, et al. ChemCatChem, 2011, 3(8), 1286.
11 Yao X J, Zhao R D, Chen L, et al. Applied Catalysis B: Environmental, 2017, 208, 82.
12 Buchalska M, Kobielusz M, Matuszek A, et al. ACS Catalysis, 2015, 5(12), 7424.
13 Falah M, MacKenzie K J D. Ceramics International, 2015, 41(10), 13702.
14 Wang F, Xu T R, Wu H, et al. Journal of Combustion Science and Technology, 2021, 27(2), 216(in Chinese).
王峰, 徐婷睿, 武浩, 等. 燃烧科学与技术, 2021, 27(2), 216.
15 Wu Y X, Liang H L, Chen X, et al. Materials Reports, 2021, 35(6), 6020(in Chinese).
吴彦霞, 梁海龙, 陈鑫, 等. 材料导报, 2021, 35(6), 6020.
16 Zhao J, Wang Y, Li Y X, et al. Catalysis Science & Technology, 2016, 6(22), 7967.
17 Kaplan R, Erjavec B, Drazic G, et al. Applied Catalysis B: Environmental, 2016, 181, 465.
18 Liu L J, Zhao H L, Andino J M, et al. ACS Catalysis, 2012, 2(8), 1817.
19 Yao X J, Zhang L, Li L L, et al. Applied Catalysis B: Environmental, 2014, 150, 315.
20 Wan Y J, Tian J Q, Qian G, et al. Green Chemical Engineering, DOI:10. 1016/j. gce. 2021. 03. 002.
21 Ramis G, Busca G, Bregani F, et al. Applied Catalysis, 1990, 64, 259.
22 Li M Y, Guo R T, Hu C X, et al. Applied Surface Science, 2018, 436, 814.
23 Tang F S, Xu B L, Shi H H, et al. Applied Catalysis B:Environmental, 2010, 94(1), 71.
24 Li Z Y, Tang Q, Zuo Z H, et al. Industrial Catalysis, 2016, 24(7), 41(in Chinese).
李泽英, 唐清, 左赵宏, 等. 工业催化, 2016, 24(7), 41.
25 Chen P R, Jabłon'ska M, Weide P, et al. ACS Catalysis, 2016, 6(11), 7696.
26 Tian J Q, Li Y Q, Zhou X, et al. Chinese Journal of Chemical Engineering, 2020, 28 (7), 1925.
27 Shen B X, Ma J, Hu G L, et al. Journal of Fuel Chemistry and Technology, 2012, 40(11), 1372(in Chinese).
沈伯雄, 马娟, 胡国丽, 等. 燃料化学学报, 2012, 40(11), 1372.
[1] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[2] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[3] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[4] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[5] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[6] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[7] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[8] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[9] 徐欢, 于佳蕊, 曹中秋, 王艳, 张轲. 钴基催化剂催化NaBH4制氢研究进展[J]. 材料导报, 2022, 36(5): 20090051-11.
[10] 谭义凤, 张婷, 张云飞, 孙琦, 田蒙奎. Cum-Fen/Ti1-xSnxO2复合催化剂的脱硝性能及抗硫活性[J]. 材料导报, 2022, 36(4): 20100096-6.
[11] 张达, 张传琪, 李少龙, 何燕. 等离子体技术应用于碳载体改性及铂基催化剂制备的研究进展[J]. 材料导报, 2022, 36(24): 21030319-9.
[12] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[13] 刘毅, 冯紫娟, 贾雯, 吴雪, 郑旭煦, 袁小亚. 一步溶剂热法合成Bi2S3/BiOBr多级异质结及其增强可见光光催化去除RhB的研究(英文)[J]. 材料导报, 2022, 36(24): 21030140-8.
[14] 李想, 张军. 氨硼烷水解制氢催化剂及其限域载体的形貌可控合成研究进展[J]. 材料导报, 2022, 36(22): 20100246-9.
[15] 刘金伟, 畅丽媛, 王如志. 磷掺杂对碳载铂催化剂氧还原催化性能的影响[J]. 材料导报, 2022, 36(21): 21040096-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed