Research Progress of Plasma Technology in the Modification of Carbon Carriers and Preparation of Platinum-based Catalysts
ZHANG Da1,2, ZHANG Chuanqi1,2, LI Shaolong1,2,3, HE Yan1,2,3,*
1 College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061,Shandong, China 2 Engineering Laboratory for the Preparation and Application of High Performance Carbon Material of Shandong Province, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China 3 Thermal Engineering Laboratory, Qingdao University of Science and Technology, Qingdao 266061,Shandong, China
Abstract: Platinum (Pt) is still an irreplaceable main catalyst for fuel cells due to its high catalytic activity. However, platinum's high cost and low reserves hinder the commercialization of fuel cells. In order to reduce the amount of Pt metal and increase its catalytic activity, it is often loaded with carbon carriers to enhance Pt dispersion and reduce Pt particle size. Lots of studies have confirmed that the modification of carbon carriers can enhance the activity of catalysts. Plasma has been widely used in the modification of carbon carriers and preparation of catalysts due to its green and fast advantages, and has currently become a research hot spot.
In the process of modifying carbon carriers and preparing platinum-based catalysts by plasma, the plasma treatment conditions affect surface modification structure, Pt particle size distribution, morphology and performance of materials. Therefore, it is necessary to find out the optimum synthesis conditions of different carbon carriers according to the action mechanism of plasma, to achieve precise control of modified structure, finally to provide effective anchor points for the loading of Pt nanoparticles and improve Pt catalytic activity. Preparation of platinum-based catalysts by plasma also requires in-depth analysis of the nucleation and growth mechanism of Pt nanoparticles, and exploration of controllable synthesis process conditions to achieve large-scale and controllable preparation of platinum-based catalysts. At the same time, the modification of carbon carriers and the preparation of platinum-based catalysts by plasma are often two separate processes, which limits the development scale and industrialization of the group technology, so considering the collaborative realization of two processes will also be one of the future research directions.
In recent years, fruitful results have been achieved in the modification of carbon materials and preparation of platinum-based catalysts by plasma. In the field of carbon material modification, the surface modification of carbon black, carbon nanotubes, graphene, carbon nanofibers and other carbon materials have been realized. And the advantages of modified carbon materials in improving the dispersion and catalytic activity of Pt catalysts have been summarized. In addition, in the preparation of platinum-based catalysts, based on the advantages of plasma green and fast, scholars in related fields have explored a variety of plasma methods, such as plasma reduction, plasma decomposition, plasma deposition, etc. These methods can partially or completely replace the traditional chemical methods and avoid the extensive use of chemical reagents. Meanwhile, the structure and electrochemical performance of platinum-based catalysts prepared by plasma methods have been studied, which is of great significance for reducing the amount of Pt metal, improving the activity of Pt catalysts and promoting the commercialization of fuel cells.
This paper summarized the application research progress of plasma in the modification of carbon carriers materials and preparation of platinum-based catalysts. The advantages and existing problems of each research work were evaluated, and corresponding solutions were put forward. Finally, the prospect of plasma methods to simultaneously realize the modification of carbon carriers and large-scale controllable preparation of platinum-based catalysts was illustrated.
作者简介: 张达,2020年6月毕业于青岛科技大学,获得工学学士学位。现为青岛科技大学机电工程学院博士研究生,在何燕教授的指导下进行研究。目前主要研究领域为等离子体制备燃料电池催化剂。 何燕,青岛科技大学机电工程学院教授、博士研究生导师,“泰山学者”特聘专家。2005年获得华中科技大学博士学位。目前主要研究碳纳米管的工业制备及其在天然气水合物、燃料电池等能源相关领域中的应用。以第一或通讯作者在Composites Science and Technology、Chemical Engineering Journal、Journal of Materials Chemistry A、International Journal of Heat and Mass Transfer、Journal of Materials Processing Technology等高水平期刊发表多篇文章,授权发明专利20余项。
引用本文:
张达, 张传琪, 李少龙, 何燕. 等离子体技术应用于碳载体改性及铂基催化剂制备的研究进展[J]. 材料导报, 2022, 36(24): 21030319-9.
ZHANG Da, ZHANG Chuanqi, LI Shaolong, HE Yan. Research Progress of Plasma Technology in the Modification of Carbon Carriers and Preparation of Platinum-based Catalysts. Materials Reports, 2022, 36(24): 21030319-9.
1 Staffell I, Scamman D, Abad A V, et al. Energy and Environmental Science, 2019, 12, 463. 2 Gao P R. Petrochemical Technology, 2020, 27(6), 115 (in Chinese). 高鹏然. 石化技术, 2020, 27(6), 115. 3 Kuang H H, Cheng Y, Cui C Q, et al. Journal of Nanoscience and Nanotechnology, 2020, 20(5), 2736. 4 Samad S, Loh K S, Wong W Y, et al. International Journal of Hydrogen Energy, 2018, 43(16), 7823. 5 Cheng Y, Jiang S P. Progress in Natural Science-Materials International, 2015, 25(6), 545. 6 Guha A, Lu W J, Zawodzinski J T A. Carbon, 2007, 45(7), 1506. 7 Liu Y, Zhang J, Fan X Z, et al. Chemistry and Adhesion, 2015, 37(1), 61(in Chinese). 刘洋, 张健, 樊西征, 等. 化学与黏合, 2015, 37(1), 61. 8 Park S J, Kim J S. Journal of Colloid and Interfaces Science, 2001, 244, 336. 9 Loganathan K, Bose D, Weinkauf D. International Journal of Hydrogen Energy, 2014, 39(28), 15766. 10 Mohan R, Modak A, Schechter A. Catalysis Science and Technology, 2020, 10(6), 1675. 11 Tang Z C, Li Q Y, Lu G X. Carbon, 2007, 45(1), 41. 12 Nicholas L, Emmanuel S, Matthieu B, et al. Plasma Chemistry and Plasma Processing, 2011, 31, 635. 13 Li X, Zhu Z H, Chen J L, et al. Journal of Power Sources, 2009, 186(1), 1. 14 Fard H F, Khodaverdi M, Pourfayaz F, et al. International Journal of Hydrogen Energy, 2020, 45, 25307. 15 Jiang Z Q, Jiang Z J, Meng Y D. Applied Surface Science, 2011, 257(7), 2923. 16 Jiang Z Q, Jiang Z J. Electrochimica Acta, 2011, 56, 8662. 17 Chetty R, Maniam K K, Schuhmann W, et al. ChemPlusChem, 2015, 80(1), 130. 18 Naumov O, Naumov S, Flyunt R, et al. ChemSusChem, 2016, 9(23), 3298. 19 Mohan R, Modak A, Schechter A. ACS Sustainable Chemistry and Engineering, 2019, 7(13), 11396. 20 Zhang W, Wang S G, Pi X Q, et al. Journal of Wuhan Institute of Technology, 2016, 38(3), 244 (in Chinese). 张维, 王升高, 皮晓强, 等. 武汉工程大学学报, 2016, 38(3), 244. 21 Hussain S, Amade R, Jover E, et al. Journal of Cluster Science, 2015, 26(2), 315. 22 Wang Y Q, Yu F, Zhu M Y, et al. Journal of Materials Chemistry A, 2018, 6(5), 2011. 23 Chien H H, Cheng Y C, Hao Y C, et al. Diamond and Related Materials, 2018, 88, 23. 24 Tsai M H, Lin C H, Chen W T, et al. ECS Journal of Solid State Science and Technology, 2020, 9(12), 121007. 25 Vervuurt R H J, Karasulu B, Thissen N F W, et al. Advanced Materials Interfaces, 2018, 5(13), 1800268. 26 Gao M, Liu D N, Yang H H, et al. Nanomaterials, 2019, 8(4), 568. 27 Jafri R I, Rajalakshmi N, Ramaprabhu S. Journal of Power Sources, 2010, 195(24), 8080. 28 Zhang C G, Hua J, Zhang X D, et al. Catalysis Today, 2015, 256, 193. 29 Hu J, Jiang L, Zhang C X, et al. Applied Physics Letters, 2014, 104, 151602. 30 Sahoo G, Polaki S R, Ghosh S, et al. Energy Storage Materials, 2018, 14, 297. 31 Sahoo G, Polaki S R, Ghosh S, et al. Journal of Power Sources, 2018, 401, 37. 32 Lin K J, Lu Y X, Du S F, et al. International Journal of Hydrogen Energy, 2016, 41(18), 7622. 33 Rashidi M, Tavasoli A. Journal of Supercritical Fluids, 2015, 98, 111. 34 Abha B, Gouri C, Shaneeth M. International Journal of Hydrogen Energy, 2017, 42, 11622. 35 Zhang Q, Li T, Kameyama H, et al. Catalysis Communications, 2014, 56, 27. 36 Tang X F, Wang Q, Li C, et al. Advanced Materials, 2018, 30, 1704779. 37 Trepanier M, Dalai A K, Abatzoglou N. Applied Catalysis, 2010, 374, 79. 38 Gan Q P, Cheng X Y, Chen J D, et al. Electrochimica Acta, 2019, 301, 47. 39 Sadakiyo M, Yoshimaru S, Kasai H, et al. Chemical Communications, 2016, 52(54), 8385. 40 Kim T, Lee D H, Jo S, et al. ChemCatChem, 2016, 8(4), 685. 41 Wang Z, Liu C J, Zhang G L. Catalysis Communications, 2009, 10(6), 959. 42 Zhou C M, Chen H, Yan Y B, et al. Catalysis Today, 2013, 211, 104. 43 Wang Q, Song M M, Chen C L, et al. Chempluschem, 2012, 77(6), 432. 44 Xu J L, Wang S G, Deng Q R, et al. Nano, 2014, 9(2), 1450018. 45 Hussain S, Erikson H, Kongi N, et al. ChemElectroChem, 2018, 5(19), 2902. 46 Lian J, Fang X, Liu W, et al. Topic in Catalysis, 2017, 60(12), 831. 47 Mathilde L B, Nathalie J, David E, et al. Applied Catalysis B: Environmental, 2014, 147, 453. 48 Merche D, Dufour T, Baneton J, et al. Plasma Processes and Polymers, 2016, 13(1), 91. 49 Robison B S, Jesus G F M, Mercedes P B M, et al. Green Chemistry, 2013, 15(7), 1981. 50 Esmaeilifara A, Rowshanzamir S, Eikani M E, et al. Energy, 2010, 35, 3941. 51 Mukerjee S, Srinivasan S, Appleby A J. Electrochimica Acta, 1993, 38, 1661. 52 Rabat H, Brault P. Fuel Cells, 2008, 8(2), 81. 53 Wu S J, Brault P, Wang Cong. Journal of Optoelectronics and Advanced Materials, 2010, 12(3), 451. 54 Yu X Y, Jiang Z Q, Meng Y D. Plasma Science and Technology, 2010, 12(1), 87. 55 Ye K, Liang F, Yao Y C, et al. Materials Reports A: Review Papers, 2019, 33(7), 1089 (in Chinese). 叶凯, 梁风, 姚耀春, 等. 材料导报:综述篇, 2019, 33(7), 1089. 56 Show Y, Hirai A, Almowarai A, et al. Thin Soild Films, 2015, 596, 198. 57 Zhang J. Safety Health and Environment, 2021, 21(1), 1 (in Chinese). 张婧. 安全、健康和环境, 2021, 21(1), 1. 58 Wu R B, Xue Y H, Qian X K, et al. International Journal of Hydrogen Energy, 2013, 38(36), 16677. 59 Shun I, Hiroki K, Cho H, et al. Applied Physics Express, 2019, 12(1), 015001. 60 Yang D H, Sui X L, Zhao L, et al. Fuel Cells, 2018, 18, 763. 61 Hiramatsu M, Mitsuguchi S, Horibe T, et al. Japanese Journal of Applied Physics, 2013, 52(1), 01AK03. 62 Maicu M, Schmittgens R, Hecker D, et al. Journal of Vacuum Science and Technology A, 2014, 32(2), 02B113. 63 Zhang J, Yi X B, Liu S, et al. Journal of Physics and Chemistry of Solids, 2017, 102, 99. 64 Tian X, Zhang X Y, Li Y, et al. Vacuum and Cryogenics, 2021, 27(1), 20 (in Chinese). 田旭, 张翔宇, 李杨, 等. 真空与低温, 2021, 27 (1), 20. 65 Yu W J, Lee S H, Ryu S B, et al. International Journal of Hydrogen Energy, 2020, 45(57), 32816. 66 Kim H J, Kaplan K, Schindler P, et al. ACS Applied Materials and Interfaces, 2019, 11(9), 9594. 67 Longrie D, Devloo-Casier K, Deduytsche D, et al. ECS Journal of Solid State Science and Technology, 2012, 1(6), Q123. 68 Liu B H, Huang H J, Huang S H, et al. Thin Solid Films, 2014, 566, 93. 69 Kwack W S, Choi H J, Choi W C, et al. Journal of Ceramic Processing Research, 2012, 13(3), 338. 70 Kawasaki M, Hsiao C N, Yang J R, et al. Micron, 2015, 74, 8. 71 Mackus A J M, Garcia-Alonso D, Knoops H C M, et al. Chemistry of Materials, 2013, 25(9), 1769. 72 Tigges S, Wohrl N, Radev I, et al. Beilstein Journal of Nanotechnology, 2020, 11, 1419.