Please wait a minute...
材料导报  2022, Vol. 36 Issue (24): 21030319-9    https://doi.org/10.11896/cldb.21030319
  无机非金属及其复合材料 |
等离子体技术应用于碳载体改性及铂基催化剂制备的研究进展
张达1,2, 张传琪1,2, 李少龙1,2,3, 何燕1,2,3,*
1 青岛科技大学机电工程学院,山东 青岛 266061
2 青岛科技大学山东省高性能碳材料制备及应用工程实验室, 山东 青岛 266061
3 青岛科技大学热能工程实验室, 山东 青岛 266061
Research Progress of Plasma Technology in the Modification of Carbon Carriers and Preparation of Platinum-based Catalysts
ZHANG Da1,2, ZHANG Chuanqi1,2, LI Shaolong1,2,3, HE Yan1,2,3,*
1 College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061,Shandong, China
2 Engineering Laboratory for the Preparation and Application of High Performance Carbon Material of Shandong Province, Qingdao University of Science and Technology, Qingdao 266061, Shandong, China
3 Thermal Engineering Laboratory, Qingdao University of Science and Technology, Qingdao 266061,Shandong, China
下载:  全 文 ( PDF ) ( 27283KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铂(Pt)因具有高催化活性仍是燃料电池不可替代的主催化剂,但铂成本高、储量少,阻碍了燃料电池的商业化进程,为降低Pt金属用量,提高其催化活性,常与碳载体负载以增强Pt分散度,降低Pt粒径。研究证实,碳载体改性会进一步提升催化剂活性。等离子体具有绿色、快速等优势,在碳载体改性及催化剂制备方面得到了广泛的应用,成为目前研究的热点。
然而,在等离子体改性碳载体及制备Pt基催化剂过程中,等离子体处理条件会对碳载体表面改性结构、Pt粒径分布、形貌及性能产生影响。因此,需要从等离子体改性碳载体作用机理入手,找到不同碳载体的最佳改性条件,实现对碳载体改性结构的精准控制。研究等离子体法制备Pt基催化剂同样需要对Pt纳米粒子的形核生长机理深入分析,并探究可控合成的工艺条件,实现Pt基催化剂的规模化、可控化制备,最终为Pt纳米颗粒的负载提供有效的锚点位点,提高Pt的催化活性。与此同时,等离子体实现碳载体改性及Pt基催化剂制备往往是两个独立的过程,这限制了该组合工艺规模化、产业化发展,因此考虑两个过程的协同实现也是未来的研究方向之一。
近年来,等离子体在碳材料改性及Pt基催化剂制备方面取得了显著成果。在碳材料改性领域,已实现了炭黑、碳纳米管、石墨烯、碳纳米纤维等其他碳材料的表面改性,并总结了改性碳载体材料在提高Pt催化剂粒子分散度、提升催化活性等方面的优势;此外,在Pt基催化剂制备方面,基于等离子体绿色、快速等优势,相关领域学者探索了多种等离子体方法,如等离子体还原、等离子体分解、等离子体沉积等,这些方法部分或完全替代了传统的化学法,避免了化学试剂的大量使用。同时,等离子体法制备的Pt基催化剂的结构及电化学性能的相关研究,为降低Pt金属用量、提高Pt催化剂活性并推动燃料电池商业化进程拓宽了思路,具有重要的意义。
本文归纳了等离子体在碳载体材料改性及铂基催化剂制备的应用研究进展,评价了各研究工作的优势、存在的问题并提出了解决途径。最后,对等离子体法实现载体改性与铂基催化剂协同制备及制备规模化、可控化的发展方向作出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张达
张传琪
李少龙
何燕
关键词:  等离子体  碳载体  改性  铂基催化剂    
Abstract: Platinum (Pt) is still an irreplaceable main catalyst for fuel cells due to its high catalytic activity. However, platinum's high cost and low reserves hinder the commercialization of fuel cells. In order to reduce the amount of Pt metal and increase its catalytic activity, it is often loaded with carbon carriers to enhance Pt dispersion and reduce Pt particle size. Lots of studies have confirmed that the modification of carbon carriers can enhance the activity of catalysts. Plasma has been widely used in the modification of carbon carriers and preparation of catalysts due to its green and fast advantages, and has currently become a research hot spot.
In the process of modifying carbon carriers and preparing platinum-based catalysts by plasma, the plasma treatment conditions affect surface modification structure, Pt particle size distribution, morphology and performance of materials. Therefore, it is necessary to find out the optimum synthesis conditions of different carbon carriers according to the action mechanism of plasma, to achieve precise control of modified structure, finally to provide effective anchor points for the loading of Pt nanoparticles and improve Pt catalytic activity. Preparation of platinum-based catalysts by plasma also requires in-depth analysis of the nucleation and growth mechanism of Pt nanoparticles, and exploration of controllable synthesis process conditions to achieve large-scale and controllable preparation of platinum-based catalysts. At the same time, the modification of carbon carriers and the preparation of platinum-based catalysts by plasma are often two separate processes, which limits the development scale and industrialization of the group technology, so considering the collaborative realization of two processes will also be one of the future research directions.
In recent years, fruitful results have been achieved in the modification of carbon materials and preparation of platinum-based catalysts by plasma. In the field of carbon material modification, the surface modification of carbon black, carbon nanotubes, graphene, carbon nanofibers and other carbon materials have been realized. And the advantages of modified carbon materials in improving the dispersion and catalytic activity of Pt catalysts have been summarized. In addition, in the preparation of platinum-based catalysts, based on the advantages of plasma green and fast, scholars in related fields have explored a variety of plasma methods, such as plasma reduction, plasma decomposition, plasma deposition, etc. These methods can partially or completely replace the traditional chemical methods and avoid the extensive use of chemical reagents. Meanwhile, the structure and electrochemical performance of platinum-based catalysts prepared by plasma methods have been studied, which is of great significance for reducing the amount of Pt metal, improving the activity of Pt catalysts and promoting the commercialization of fuel cells.
This paper summarized the application research progress of plasma in the modification of carbon carriers materials and preparation of platinum-based catalysts. The advantages and existing problems of each research work were evaluated, and corresponding solutions were put forward. Finally, the prospect of plasma methods to simultaneously realize the modification of carbon carriers and large-scale controllable preparation of platinum-based catalysts was illustrated.
Key words:  plasma    carbon carrier    modification    platinum-based catalyst
出版日期:  2022-12-28      发布日期:  2023-01-03
ZTFLH:  TB33  
  TB34  
  O539  
基金资助: 国家自然科学基金(51676103;52176076);山东省泰山学者项目(ts20190937);青岛科技大学研究生自主科研创新项目(B2022KY006)
通讯作者:  heyan@qust.edu.cn   
作者简介:  张达,2020年6月毕业于青岛科技大学,获得工学学士学位。现为青岛科技大学机电工程学院博士研究生,在何燕教授的指导下进行研究。目前主要研究领域为等离子体制备燃料电池催化剂。
何燕,青岛科技大学机电工程学院教授、博士研究生导师,“泰山学者”特聘专家。2005年获得华中科技大学博士学位。目前主要研究碳纳米管的工业制备及其在天然气水合物、燃料电池等能源相关领域中的应用。以第一或通讯作者在Composites Science and Technology、Chemical Engineering Journal、Journal of Materials Chemistry A、International Journal of Heat and Mass Transfer、Journal of Materials Processing Technology等高水平期刊发表多篇文章,授权发明专利20余项。
引用本文:    
张达, 张传琪, 李少龙, 何燕. 等离子体技术应用于碳载体改性及铂基催化剂制备的研究进展[J]. 材料导报, 2022, 36(24): 21030319-9.
ZHANG Da, ZHANG Chuanqi, LI Shaolong, HE Yan. Research Progress of Plasma Technology in the Modification of Carbon Carriers and Preparation of Platinum-based Catalysts. Materials Reports, 2022, 36(24): 21030319-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21030319  或          http://www.mater-rep.com/CN/Y2022/V36/I24/21030319
1 Staffell I, Scamman D, Abad A V, et al. Energy and Environmental Science, 2019, 12, 463.
2 Gao P R. Petrochemical Technology, 2020, 27(6), 115 (in Chinese).
高鹏然. 石化技术, 2020, 27(6), 115.
3 Kuang H H, Cheng Y, Cui C Q, et al. Journal of Nanoscience and Nanotechnology, 2020, 20(5), 2736.
4 Samad S, Loh K S, Wong W Y, et al. International Journal of Hydrogen Energy, 2018, 43(16), 7823.
5 Cheng Y, Jiang S P. Progress in Natural Science-Materials International, 2015, 25(6), 545.
6 Guha A, Lu W J, Zawodzinski J T A. Carbon, 2007, 45(7), 1506.
7 Liu Y, Zhang J, Fan X Z, et al. Chemistry and Adhesion, 2015, 37(1), 61(in Chinese).
刘洋, 张健, 樊西征, 等. 化学与黏合, 2015, 37(1), 61.
8 Park S J, Kim J S. Journal of Colloid and Interfaces Science, 2001, 244, 336.
9 Loganathan K, Bose D, Weinkauf D. International Journal of Hydrogen Energy, 2014, 39(28), 15766.
10 Mohan R, Modak A, Schechter A. Catalysis Science and Technology, 2020, 10(6), 1675.
11 Tang Z C, Li Q Y, Lu G X. Carbon, 2007, 45(1), 41.
12 Nicholas L, Emmanuel S, Matthieu B, et al. Plasma Chemistry and Plasma Processing, 2011, 31, 635.
13 Li X, Zhu Z H, Chen J L, et al. Journal of Power Sources, 2009, 186(1), 1.
14 Fard H F, Khodaverdi M, Pourfayaz F, et al. International Journal of Hydrogen Energy, 2020, 45, 25307.
15 Jiang Z Q, Jiang Z J, Meng Y D. Applied Surface Science, 2011, 257(7), 2923.
16 Jiang Z Q, Jiang Z J. Electrochimica Acta, 2011, 56, 8662.
17 Chetty R, Maniam K K, Schuhmann W, et al. ChemPlusChem, 2015, 80(1), 130.
18 Naumov O, Naumov S, Flyunt R, et al. ChemSusChem, 2016, 9(23), 3298.
19 Mohan R, Modak A, Schechter A. ACS Sustainable Chemistry and Engineering, 2019, 7(13), 11396.
20 Zhang W, Wang S G, Pi X Q, et al. Journal of Wuhan Institute of Technology, 2016, 38(3), 244 (in Chinese).
张维, 王升高, 皮晓强, 等. 武汉工程大学学报, 2016, 38(3), 244.
21 Hussain S, Amade R, Jover E, et al. Journal of Cluster Science, 2015, 26(2), 315.
22 Wang Y Q, Yu F, Zhu M Y, et al. Journal of Materials Chemistry A, 2018, 6(5), 2011.
23 Chien H H, Cheng Y C, Hao Y C, et al. Diamond and Related Materials, 2018, 88, 23.
24 Tsai M H, Lin C H, Chen W T, et al. ECS Journal of Solid State Science and Technology, 2020, 9(12), 121007.
25 Vervuurt R H J, Karasulu B, Thissen N F W, et al. Advanced Materials Interfaces, 2018, 5(13), 1800268.
26 Gao M, Liu D N, Yang H H, et al. Nanomaterials, 2019, 8(4), 568.
27 Jafri R I, Rajalakshmi N, Ramaprabhu S. Journal of Power Sources, 2010, 195(24), 8080.
28 Zhang C G, Hua J, Zhang X D, et al. Catalysis Today, 2015, 256, 193.
29 Hu J, Jiang L, Zhang C X, et al. Applied Physics Letters, 2014, 104, 151602.
30 Sahoo G, Polaki S R, Ghosh S, et al. Energy Storage Materials, 2018, 14, 297.
31 Sahoo G, Polaki S R, Ghosh S, et al. Journal of Power Sources, 2018, 401, 37.
32 Lin K J, Lu Y X, Du S F, et al. International Journal of Hydrogen Energy, 2016, 41(18), 7622.
33 Rashidi M, Tavasoli A. Journal of Supercritical Fluids, 2015, 98, 111.
34 Abha B, Gouri C, Shaneeth M. International Journal of Hydrogen Energy, 2017, 42, 11622.
35 Zhang Q, Li T, Kameyama H, et al. Catalysis Communications, 2014, 56, 27.
36 Tang X F, Wang Q, Li C, et al. Advanced Materials, 2018, 30, 1704779.
37 Trepanier M, Dalai A K, Abatzoglou N. Applied Catalysis, 2010, 374, 79.
38 Gan Q P, Cheng X Y, Chen J D, et al. Electrochimica Acta, 2019, 301, 47.
39 Sadakiyo M, Yoshimaru S, Kasai H, et al. Chemical Communications, 2016, 52(54), 8385.
40 Kim T, Lee D H, Jo S, et al. ChemCatChem, 2016, 8(4), 685.
41 Wang Z, Liu C J, Zhang G L. Catalysis Communications, 2009, 10(6), 959.
42 Zhou C M, Chen H, Yan Y B, et al. Catalysis Today, 2013, 211, 104.
43 Wang Q, Song M M, Chen C L, et al. Chempluschem, 2012, 77(6), 432.
44 Xu J L, Wang S G, Deng Q R, et al. Nano, 2014, 9(2), 1450018.
45 Hussain S, Erikson H, Kongi N, et al. ChemElectroChem, 2018, 5(19), 2902.
46 Lian J, Fang X, Liu W, et al. Topic in Catalysis, 2017, 60(12), 831.
47 Mathilde L B, Nathalie J, David E, et al. Applied Catalysis B: Environmental, 2014, 147, 453.
48 Merche D, Dufour T, Baneton J, et al. Plasma Processes and Polymers, 2016, 13(1), 91.
49 Robison B S, Jesus G F M, Mercedes P B M, et al. Green Chemistry, 2013, 15(7), 1981.
50 Esmaeilifara A, Rowshanzamir S, Eikani M E, et al. Energy, 2010, 35, 3941.
51 Mukerjee S, Srinivasan S, Appleby A J. Electrochimica Acta, 1993, 38, 1661.
52 Rabat H, Brault P. Fuel Cells, 2008, 8(2), 81.
53 Wu S J, Brault P, Wang Cong. Journal of Optoelectronics and Advanced Materials, 2010, 12(3), 451.
54 Yu X Y, Jiang Z Q, Meng Y D. Plasma Science and Technology, 2010, 12(1), 87.
55 Ye K, Liang F, Yao Y C, et al. Materials Reports A: Review Papers, 2019, 33(7), 1089 (in Chinese).
叶凯, 梁风, 姚耀春, 等. 材料导报:综述篇, 2019, 33(7), 1089.
56 Show Y, Hirai A, Almowarai A, et al. Thin Soild Films, 2015, 596, 198.
57 Zhang J. Safety Health and Environment, 2021, 21(1), 1 (in Chinese).
张婧. 安全、健康和环境, 2021, 21(1), 1.
58 Wu R B, Xue Y H, Qian X K, et al. International Journal of Hydrogen Energy, 2013, 38(36), 16677.
59 Shun I, Hiroki K, Cho H, et al. Applied Physics Express, 2019, 12(1), 015001.
60 Yang D H, Sui X L, Zhao L, et al. Fuel Cells, 2018, 18, 763.
61 Hiramatsu M, Mitsuguchi S, Horibe T, et al. Japanese Journal of Applied Physics, 2013, 52(1), 01AK03.
62 Maicu M, Schmittgens R, Hecker D, et al. Journal of Vacuum Science and Technology A, 2014, 32(2), 02B113.
63 Zhang J, Yi X B, Liu S, et al. Journal of Physics and Chemistry of Solids, 2017, 102, 99.
64 Tian X, Zhang X Y, Li Y, et al. Vacuum and Cryogenics, 2021, 27(1), 20 (in Chinese).
田旭, 张翔宇, 李杨, 等. 真空与低温, 2021, 27 (1), 20.
65 Yu W J, Lee S H, Ryu S B, et al. International Journal of Hydrogen Energy, 2020, 45(57), 32816.
66 Kim H J, Kaplan K, Schindler P, et al. ACS Applied Materials and Interfaces, 2019, 11(9), 9594.
67 Longrie D, Devloo-Casier K, Deduytsche D, et al. ECS Journal of Solid State Science and Technology, 2012, 1(6), Q123.
68 Liu B H, Huang H J, Huang S H, et al. Thin Solid Films, 2014, 566, 93.
69 Kwack W S, Choi H J, Choi W C, et al. Journal of Ceramic Processing Research, 2012, 13(3), 338.
70 Kawasaki M, Hsiao C N, Yang J R, et al. Micron, 2015, 74, 8.
71 Mackus A J M, Garcia-Alonso D, Knoops H C M, et al. Chemistry of Materials, 2013, 25(9), 1769.
72 Tigges S, Wohrl N, Radev I, et al. Beilstein Journal of Nanotechnology, 2020, 11, 1419.
[1] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[2] 王秀超, 秦莹莹, 郭红革. 生物基可降解包装薄膜的研究进展[J]. 材料导报, 2022, 36(Z1): 21070279-8.
[3] 张子健, 姜锋, 于春晓. 长碳链聚酰胺PA1012的改性研究进展[J]. 材料导报, 2022, 36(Z1): 21100088-6.
[4] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[5] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[6] 王岚, 罗学东, 张琪, 周晓东, 李超. 温拌胶粉改性沥青-集料粘附性及其体系水稳定性分析[J]. 材料导报, 2022, 36(8): 21010186-4.
[7] 李佩悦, 马立云, 谢恩俊, 任子杰, 周新军, 高惠民, 吴建新. 六方氮化硼高导热纳米材料:晶体结构、导热机理及表面修饰改性[J]. 材料导报, 2022, 36(6): 20090231-12.
[8] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[9] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[10] 杜娟, 李芳, 宋海鹏, 魏子明, 李香云. 金属表面复合防腐膜的制备及机理研究进展[J]. 材料导报, 2022, 36(3): 20060287-8.
[11] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[12] 杨文飞, 张钟元, 张雪, 王轶农, 郭显娥, 董星龙. 多组元Ni/NiO/rGO纳米复合材料的制备及电化学储锂性能[J]. 材料导报, 2022, 36(23): 21060194-8.
[13] 曹鹏飞, 刘雅婷, 陈妮, 汤文静, 李福枝, 夏勇, 孙翱魁. 水系锌离子电池正极材料的研究进展[J]. 材料导报, 2022, 36(23): 21010239-13.
[14] 翟俊俊, 赵思, 肖秦箭, 李粤, 王唯, 徐贵贵, 李草, 匡映. 生物质气凝胶的疏水改性及应用研究进展[J]. 材料导报, 2022, 36(23): 20120203-15.
[15] 梁朝, 李茹春, 李春全, 孙志明, 陈珍明, 郑水林. 硅酸钙表面有机改性和形貌对填充PP复合材料力学性能的影响及机理[J]. 材料导报, 2022, 36(23): 21080298-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed