Microstructure and Corrosion Resistance of Nb-Ti-Fe Alloy and Its Microhardness Before and After Hydrogen Treatment
HUANG Renjun1, YAN Erhu1,2,*, CHEN Yuncan1, GE Xiaoyu1, CHENG Jian1, WANG Hao1, LIU Wei1, CHU Hailiang1, ZOU Yongjin1, XU Fen1, SUN Lixian1,*
1 Guangxi Key Laboratory of Information Laboratory, Guilin University of Electronic Technology, Guilin 541004,Guangxi, China 2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Abstract: Nb-Ti-Fe hydrogen filtration alloy membrane has been widely paid attention because of its high hydrogen permeability and low price. However, up to now, there are few reports on the corrosion resistance of the alloy film, and the relationship between the microstructure and corrosion resistance of the alloy has not been established. Based on this, the microstructure, corrosion resistance and microhardness of Nb-Ti-Fe hydrogen separation alloy before and after hydrogen treatment were studied in this work. The results show that:in the two groups of Nb10Ti50+xFe40-x and Nb15Ti45+xFe40-x (x=0, 5, 10, 15) alloys, the microstructure of the alloy is composed of primary α-Nb phase and eutectic (α-Nb+TiFe) phase when x<10, while the primary phase is phase TiFe when x>10. When x=10, a small amount of primary α-Nb phase exists in Nb10Ti60Fe30, but this phase disappears in Nb15Ti55Fe30 alloy and is replaced by eutectic (α-Nb+TiFe) phase. Secondly, an extremely thin oxide covering layer is formed on the surface of the alloy after electrochemical corrosion, which is divided into Nb2O5, TiO2, Nb2C and Fe2O3. The corrosion performance is closely related to the type and composition of the phase. The corrosion resistance of Nb10Ti65Fe25alloy (4#) is strong. The Nb15Ti45Fe40 alloy (5#) with more FeNb has the lowest corrosion resistance. In addition, the hydrogen-loading properties of the alloys are gradually improved with the increase of Ti/Fe atomic ratio. On the other hand, the Vickers hardness values decrease first and then increase. The average hardness values of the alloys are distributed between 520HV—570HV. The microhardness values of each phase in the structure are eutectic (α-Nb+TiFe), TiFe, α-Nb, FeNb from small to large. The reason for the decrease in hardness of the alloy after hydrogen implantation is that the introduction of hydrogen atoms promotes dislocation proliferation and promotes double kink nucleation, resulting in internal defects.
通讯作者:
* 闫二虎,桂林电子科技大学教授、硕士研究生导师。2009年7月本科毕业于河北科技大学,2011年7月和2014年7月在哈尔滨工业大学分别取得工学硕士学位和工学博士学位,毕业后在桂林电子科技大学工作。2018年11月至2019年11月获广西高校优秀教师出国留学深造项目资助赴加拿大国家科学研究院信息-能源材料研究所进行为期1年的访学研究工作。主要从事合金定向凝固理论和新型能源材料方面的研究,主要包含相图热力学计算、多相合金凝固行为和新型渗氢/储氢性能的研究。近五年来在Journal of Membrane Science、Journal of Alloys and Compounds、International Journal of Hydrogen Energy、Journal of Crystal Growth、International Journal of Materials Research、《金属学报》等刊物上发表SCI文章 60余篇,申请专利10余项。yeh@guet.edu.cn 孙立贤,桂林电子科技大学教授、博士研究生导师,1994年获湖南大学理学博士学位(师从俞汝勤院士);1995.2—1995.4任日本产业技术综合研究所客座研究员 (STA);1995.5—1996.10获洪堡基金(AvH)资助在德国耶拿大学无机分析化学研究所进行合作研究;1996.10—2002.9任日本工业技术院特别研究员(AIST)/产业技术研究员(NEDO);曾任湖南农业大学分析室主任和湖南师范大学副教授;曾任大连化学物理研究所航天催化与新材料研究室材料热化学课题组组长、研究员、博士研究生导师,大连理工大学、暨南大学、湘南学院兼职教授,桂林电子科技大学“八桂学者”。在Energy & Environmental Science、Journal of Materials Chemistry A、Biosensors & Bioelectronics、Crystal Growth & Design、Journal of Physical Chemistry C、Dalton Transactions、International Journal of Hydrogen Energy等国内外重要学术刊物发表学术论文330余篇(其中SCI、EI收录300余篇)。sunlx@guet.edu.cn
黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
HUANG Renjun, YAN Erhu, CHEN Yuncan, GE Xiaoyu, CHENG Jian, WANG Hao, LIU Wei, CHU Hailiang, ZOU Yongjin, XU Fen, SUN Lixian. Microstructure and Corrosion Resistance of Nb-Ti-Fe Alloy and Its Microhardness Before and After Hydrogen Treatment. Materials Reports, 2023, 37(7): 21070095-7.
1 Ge X Y, Yan E H, Chen Y C, et al. Materials Reports, 2022, 36(18), 21060218 (in Chinese). 葛晓宇, 闫二虎, 陈运灿, 等. 材料导报, 2022, 36(18), 21060218. 2 Sun Y, Su W, Zhou L. Hydrogen fuel, Chemical Industry Press, China, 2005, pp.1 (in Chinese). 孙艳, 苏伟, 周理. 氢燃料, 化学工业出版社, 2005, pp.1, 3 Di C B, Wang J H, Yan E H, et al. Materials Reports, 2021, 35(18),18109(in Chinese). 狄翀博, 王金华, 闫二虎, 等. 材料导报, 2021, 35(18), 18109. 4 Pati S, Jat R A, Anand N S, et al. Journal of Membrane Science, 2017, 522, 151. 5 Li H, Carvella A, Xu H Y. Journal of Materials Chemistry A, 2016, 4, 14069. 6 Piskin F, Akyildiz H, Öztürk H. International Journal of Hydrogen Energy, 2015, 40, 7553. 7 Lopez A, Melendez M J, Collins V. International Journal of Hydrogen Energy, 2016, 41, 23363. 8 Hashi K, Ishikawa K, Matasuda T, et al. Journal of Alloys and Compounds, 2004, 368, 215. 9 Dolan M D, Kellam M E, Mclenan K G, et al. International Journal of Hydrogen Energy, 2013, 38, 9794. 10 Magnone E, Jeon S, Parak J H, et al. Journal of Membrane Science, 2011, 384, 136. 11 Ishikawa K, Watanabe S, Aoki K. Journal of Alloys and Compounds, 2013, 566, 68. 12 Ishikawa K, Takano T, Matsuda T, et al. Applied Physics Letters, 2005, 87(8), 315. 13 Kamakpto P, Sholl D S. Journal of Membrane Science, 2006, 279, 94. 14 Erhu Yan, Yuncan Chen, Kexiang Zhang, et al. Separation and Purification Technology, 2021, 257, 117945. 15 Yan E H, Huang H R, Sun S H, et al. Journal of Membrane Science, 2018, 565, 411. 16 Amano M, Nishimura C, Komaki M. Materials Transactions, 1990, 31(5), 404. 17 Li A, Liang W, Hughes R. Journal of Membrane Science, 2000, 165(1), 135. 18 Hulme J, Komaki M, Nishimura C, et al. Current Applied Physics, 2011, 11, 972. 19 Hou K, Hughes R. Journal of Membrane Science, 2002, 206(1-2), 119. 20 Yang J Y, Nishimura C, Komaki M. Journal of Membrane Science, 2008, 309(1-2), 246. 21 Song D W, Wang Y J, Liu Y, et al. Journal of Rare Earths, 2008, 26, 398. 22 Jin Z H, Ge H H, Lin W W, et al. Applied Surface Science, 2014, 322, 47. 23 Losiewicz B, Kubisztal J. International Journal of Hydrogen Energy, 2018, 43, 20004. 24 Zhao J W. Influence of thermo hydrogen treatment on microstructural evolution and high temperature deformation behavior of titanium alloys. Ph. D. Thesis, Northeastern University, China, 2009(in Chinese). 赵敬伟. 热氢处理对钛合金组织演变及高温变形行为的研究. 博士学位论文, 东北大学, 2009. 25 Ding X, Yang F L, Hu J Z, et al. Materials Reports B:Research Papers, 2012, 26(12), 1 (in Chinese). 丁珣, 杨伏良, 胡建中, 等. 材料导报:研究篇, 2012, 26(12), 1. 26 Jiang Z, Li P, Yuan B G, et al. Rare Metal Materials and Engineering, 2013, 42(6), 1190.(in Chinese). 江政, 李萍, 袁宝国, 等. 稀有金属材料与工程, 2013, 42(6), 1190. 27 Chu W Y. Hydrogen damage and hysteretic fracture, Beijing:Metallurgical Industry Press, China, 1998, pp.25(in Chinese). 褚武扬. 氢损伤和滞后断裂, 北京:冶金工业出版社, 1998, pp.25.