Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21090292-7    https://doi.org/10.11896/cldb.21090292
  金属与金属基复合材料 |
电子级超细树枝状铜粉的抗氧化性研究
方亚超1, 潘明熙2, 黄惠1,2,*, 何亚鹏1, 张盼盼1, 杨聪庆1, 郭忠诚1, 陈步明1
1 昆明理工大学冶金与能源工程学院,昆明 650093
2 昆明高聚科技有限公司,昆明 650106
Study on the Oxidation Resistance of Electronic Grade Ultrafine Dendritic Copper Powder
FANG Yachao1, PAN Mingxi2, HUANG Hui1,2,*, HE Yapeng1, ZHANG Panpan1, YANG Congqing1, GUO Zhongcheng1, CHEN Buming1
1 College of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Kunming Gaoju Technology Co., Ltd., Kunming 650106, China
下载:  全 文 ( PDF ) ( 22581KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超细铜粉被广泛应用于电子浆料,由于其比表面积大和表面活性高,易被氧化生成氧化铜或氧化亚铜,从而其导电性及活性降低。本工作采用苯并三氮唑与表面处理剂复配后对电子级超细树枝状铜粉进行表面处理,通过高温氧化、电导率、形貌以及物相等分析,研究了表面处理剂对铜粉的抗氧化性、导电性、形貌和物相结构的影响规律。结果表明,经过表面处理后的铜粉在100~200 ℃的导电性均比未处理的铜粉有不同程度提高,其导电性也较好,即电阻率仍保持0.224 Ω·cm,表面无明显氧化铜或氧化亚铜生成,且树枝状结构也未发生塌陷。因此,采用复配表面处理后,电子级超细树枝状铜粉的抗氧化性得到提升,满足中低温电子浆料的导电填料要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方亚超
潘明熙
黄惠
何亚鹏
张盼盼
杨聪庆
郭忠诚
陈步明
关键词:  电子浆料  超细铜粉  树枝状  抗氧化性  导电性    
Abstract: Ultrafine copper powder is widely employed as materials in electronic pastes. Due to its large specific surface area and high surface activity, it is easy to be oxidized to produce copper oxide or cuprous oxide, thereby reducing its conductivity and activity. In this work, surface treatment of the electronic grade ultrafine dendritic copper powder was conducted by the combination of benzotriazole and surface treatment agent. Through high temperature oxidation, conductivity, morphology and substance equivalence analysis, the effect of surface treatment agent on the oxidation resistance, conductivity, morphology and phase structure of copper powder were studied. The results suggest that the conductivity of the copper powder after the surface treatment at 100—200 ℃ was improved to different degrees than that of the untreated copper powder. The sample also exhibited better conductivity and still maintained the resistivity of 0.224 Ω·cm. Besides, no obvious copper oxide or cuprous oxide produced, and collapse of the dendritic shape structure was observed. Therefore, benefitting from the introduction of the benzotriazole and surface treatment agent, the oxidation resistance of the electronic grade ultrafine dendritic copper powder is considerably improved, which could meet the requirement of conductive fillers for medium-low temperature electronic pastes.
Key words:  electronic paste    ultra-fine copper powder    dendritic    oxidation resistance    conductivity
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TF80  
基金资助: 国家自然科学基金(52064028);云南省基础研究计划重点项目(202101AS070013);云南省中央引导地方专项(202107AC110009)
通讯作者:  * 黄惠,昆明理工大学冶金与能源工程学院教授、博士研究生导师。2000年毕业于四川大学化学学院高分子专业,获学士学位,2006年7月毕业于云南大学化学与材料工程学院材料专业,获硕士学位,2010年3月毕业于昆明理工大学冶金与能源工程学院冶金物理化学专业,获博士学位,同年留校任教至今。主要从事导电高分子新型节能电极材料、储能材料、特种功能粉体材料、冶金电化学及湿法冶金新材料等应用基础研究及科技成果转化应用工作。申请国家发明专利38项,出版专著4部,发表学术论文100余篇。huihuanghan@kust.edu.cn   
作者简介:  方亚超,2019年6月毕业于辽宁科技学院,获得工学学士学位。现为昆明理工大学冶金与能源工程学院硕士研究生,在黄惠教授的指导下进行研究。目前主要研究领域为粉末冶金。
引用本文:    
方亚超, 潘明熙, 黄惠, 何亚鹏, 张盼盼, 杨聪庆, 郭忠诚, 陈步明. 电子级超细树枝状铜粉的抗氧化性研究[J]. 材料导报, 2023, 37(7): 21090292-7.
FANG Yachao, PAN Mingxi, HUANG Hui, HE Yapeng, ZHANG Panpan, YANG Congqing, GUO Zhongcheng, CHEN Buming. Study on the Oxidation Resistance of Electronic Grade Ultrafine Dendritic Copper Powder. Materials Reports, 2023, 37(7): 21090292-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090292  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21090292
1 Tan N, Guo Z C, Chen B M, et al. Materials Protection, 2009, 42(11), 33(in Chinese).
谭宁, 郭忠诚, 陈步明, 等. 材料保护, 2009, 42(11), 33.
2 Cao X G, Zhang H Y. Powder Technology, 2012, 226, 53.
3 Liu Y, Zhou S Q, Li Q X, et al. World Nonferrous Metals, 2017 (20), 27(in Chinese).
刘银, 周少强, 李清湘, 等. 世界有色金属, 2017 (20), 27.
4 Wu S. Materials Letters, 2007, 61(4/5), 1125.
5 Si X G, Lu X G, Li C X, et al. Journal of University of Science and Technology Beijng, 2010, 32(7), 905(in Chinese).
司新国, 鲁雄刚, 李传雄, 等. 北京科技大学学报, 2010, 32(7), 905.
6 Lou W B, Cai W Q, Li P, et al. Powder Technology, 2018, 326, 84.
7 Wang Y M, Yu M J, Wang S, et al. Materials Reports, 2007, 21(Z1), 126(in Chinese).
王玉棉, 于梦娇, 王胜, 等. 材料导报, 2007, 21(Z1), 126.
8 Wang Q F, Liu X X, Wang X J. Surface Technology, 2007, 36(1), 45(in Chinese).
王青锋, 刘祥萱, 王煊军. 表面技术, 2007, 36(1), 45.
9 Cao X G, Zhang H Y, et al. Electronic Materials Letters, 2012, 8(4), 467.
10 Yu S S, Li S M, Ge X, et al. Industrial & Engineering Chemistry Research, 2014, 53(6), 2238.
11 Huang H, Zhou J Y, Fu R C, et al. Rare Metal Materials and Engineering, 2014, 43(2), 490(in Chinese).
黄惠, 周继禹, 付仁春, 等. 稀有金属材料与工程, 2014, 43(2), 490.
12 Yu S, Peng M, Hu Q, et al. Journal of Wuhan Institute of Technology, 2020, 42(6), 622(in Chinese).
余珊, 彭明, 胡琴, 等. 武汉工程大学学报, 2020, 42 (6), 622.
13 Guo Y H, Jiang B B, Chen J Z, et al. Surface & Coatings Technology, 2007, 202(3), 555.
14 Sun Z, Yu X H, Zhuang Z Y, et al. Surface Technology, 2021, 50(5), 119(in Chinese).
孙志, 于晓辉, 庄再裕, 等. 表面技术, 2021, 50(5), 119.
15 Han G S. Study on storage stability of copper powder epoxy resin conductive adhesive. Master's Thesis, Jiangsu University of Science and Technology, China, 2010(in Chinese).
韩广帅. 铜粉环氧树脂导电胶储存稳定性的研究. 硕士学位论文, 江苏科技大学, 2010.
16 Yuan Y, Song P W, Zhao K. Surface Technology, 2007, 36(1), 11(in Chinese).
袁颖, 宋佩维, 赵康. 表面技术, 2007, 36(1), 11.
17 Sun H P, Wang K J, Cai X L, et al. Materials Protection, 2013, 46(6), 18(in Chinese)
孙鸿鹏, 王开军, 蔡晓兰, 等. 材料保护, 2013, 46(6), 18.
18 Xu R F, Luo Y, Xue W G. Synthetic Lubricants, 2017, 44(1), 22(in Chinese).
徐瑞峰, 罗意, 薛卫国. 合成润滑材料, 2017, 44(1), 22.
19 Qiu L H, Wu C H, Li S R. The Chinese Journal of Process Engineering, 2004, 4(Z1), 68(in Chinese).
邱六合, 吴昶辉, 李世荣. 过程工程学报, 2004, 4(Z1), 68.
20 Song Y H, Lan X Z, Yang Y, et al. Materials Reports, 2009, 23(2), 54(in Chinese).
宋永辉, 兰新哲, 杨勇, 等. 材料导报, 2009, 23(2), 54.
21 Winnicki M, Malachowska A, Baszczuk A, et al. Surface & Coatings Technology, 2017, 318, 90.
22 Hu Y S, Tang Y, Zhou J C, et al. Materials Reports, 2013, 27(S2), 43(in Chinese).
胡永栓, 唐耀, 周珺成, 等. 材料导报, 2013, 27(S2), 43.
[1] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[2] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[3] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[4] 王伟, 郭鸽鸽, 丁士杰, 程鹏, 高原, 王快社. 钛合金表面抗氧化玻璃涂层研究进展[J]. 材料导报, 2022, 36(Z1): 21110265-8.
[5] 温泽明, 陈剑英, 王越平, 肖红. 镓基液态金属在可穿戴器件与智能服装上的应用研究进展[J]. 材料导报, 2022, 36(9): 20080043-5.
[6] 丁亚文, 肖国庆, 丁冬海, 臧云飞, 陈建军. 晶体硅切割废料对Al2O3-SiC-C铁沟浇注料性能的影响[J]. 材料导报, 2022, 36(6): 21010084-5.
[7] 谭海丰, 侯梦晴, 吴晨, 贺春林, 张滨. 镍基石墨烯复合材料的研究进展[J]. 材料导报, 2022, 36(24): 21040029-6.
[8] 刘虎, 齐哲, 艾莹珺, 周怡然, 杨金华, 赵文青, 赵春玲, 郎旭东, 贺宜红, 焦健. SiC涂层对熔渗SiCf/SiC复合材料高温服役性能的影响[J]. 材料导报, 2022, 36(21): 21070221-5.
[9] 初红涛, 陈嘉琪, 鞠洁, 姚冬, 于淼, 苏立强. 改性树枝状纤维形二氧化硅的应用研究进展[J]. 材料导报, 2022, 36(17): 20100122-7.
[10] 赖旭平, 李天方, 刘瑞, 孙红亮. 元素Nb、Hf、Zr对γ-TiAl合金抗氧化性能的影响[J]. 材料导报, 2021, 35(Z1): 374-377.
[11] 唐紫苑, 张淑婷, 杜开平, 宣鹏举, 司丽娜. 包埋渗技术在镍基高温合金中的应用[J]. 材料导报, 2021, 35(Z1): 389-394.
[12] 封帆, 王美玲, 李振华, 陆永浩. 超超临界机组用HR3C奥氏体耐热钢研究进展[J]. 材料导报, 2021, 35(9): 9186-9195.
[13] 刘炘城, 邵海成, 乔冠军, 陆浩杰, 于刘旭, 张相召, 刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能[J]. 材料导报, 2021, 35(8): 8076-8081.
[14] 宋庆功, 董珊珊, 胡烨, 康建海, 严慧羽, 王明超, 刘志锋. Mo掺杂对γ-TiAl基合金能量稳定性和抗氧化性的影响[J]. 材料导报, 2021, 35(2): 2057-2063.
[15] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟. 难熔高熵合金的研究进展[J]. 材料导报, 2021, 35(17): 17064-17080.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed