Please wait a minute...
材料导报  2022, Vol. 36 Issue (17): 20100122-7    https://doi.org/10.11896/cldb.20100122
  无机非金属及其复合材料 |
改性树枝状纤维形二氧化硅的应用研究进展
初红涛*, 陈嘉琪, 鞠洁, 姚冬, 于淼, 苏立强
齐齐哈尔大学化学与化学工程学院,黑龙江 齐齐哈尔 161006
Application Research Progress of Modified Dendritic Fiber Silica
CHU Hongtao*, CHEN Jiaqi, JU Jie, YAO Dong, YU Miao, SU Liqiang
School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, China
下载:  全 文 ( PDF ) ( 8139KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 介孔二氧化硅纳米材料具有较大的比表面积和稳定物理化学性质,因此在吸附、催化、生物医学及其他领域应用广泛。近年来,学术界致力于对介孔二氧化硅纳米材料的形态和结构(粒径尺寸、粒子形状、孔道结构及易于官能化的表面)进行调控,因为材料的精细结构对材料的物理化学性质有着显著影响,而其物理化学性质又决定着其性能和应用。
但纯二氧化硅材料的特异性不足导致其应用效果受到一定的限制,因此如何提高其特异性从而开拓其应用领域成为研究热点。和传统的二维介孔二氧化硅材料相比,树枝状纤维形二氧化硅(DFNS)具有更加开放、更易渗透的树枝状孔道结构。随着树枝状纤维形二氧化硅的出现,因其可修饰的表面和特殊的辐射状孔道结构,将二氧化硅纳米材料优异的物理化学性质和按实际需要进行改性所增加的特异性相结合,使介孔二氧化硅纳米材料的应用前景有了质的飞跃并开始在诸多领域展露头角。
本文结合本课题组的工作内容对树枝状纤维形二氧化硅的合成及形貌调控进行归纳概述,并对通过包覆磁性核壳结构、接枝官能团或化学单体、负载金属或金属氧化物等改性手段制备的功能材料在吸附、催化、生物医学、色谱固定相、气体捕捉等领域的应用情况进行了总结。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
初红涛
陈嘉琪
鞠洁
姚冬
于淼
苏立强
关键词:  树枝状纤维形二氧化硅  改性  吸附  催化  应用    
Abstract: Mesoporous silica nano-materials (MSNs) have been widely used in various fields, e.g., adsorption, catalysis, and biomedicine, due to their large specific surface area as well as stable physical and chemical properties. In recent years, relevant niches of the academia have been committing themselves to regulating and controlling the morphology and structure of MSNs (particle size, particle shape, channel structure, and readily-functionalized surface), because the fineness of the material's structure has a significant impact on its physical and chemical properties, which will in turn translates to its performance and application.
Pure silica materials, however, have their application scopes limited due to their lack of specificity. In this sense, how to improve their specificity and open up more fields of application have become popular research topics. Compared with the conventional two-dimensional mesoporous silica materials, dendritic fibrous nano-silica (DFNS) has a more open and more permeable dendritic pore structure. The modifiable surface and special radial channel structure of the dendritic fibrous nano-silica can combine the excellent physical and chemical properties of the silica nano-material with the modified functional specificity arising from the actual need. This signifies a qualitative leap in the application prospect of the MSNs, allowing more and more applications to gradually emerge across various fields.
This paper concludes and reviews the synthesis and morphological regulation of DFNS based on the work of the research team. Furthermore, the applications of functional materials prepared by coating magnetic core-shell structures, grafting functional groups and chemical monomers, or with the use of supported metals or metallic oxides in adsorption, catalysis, biomedicine, chromatographic stationary phase, gas capture and other fields have also been summarized.
Key words:  dendritic fiber silica    modification    adsorption    catalysis    application
出版日期:  2022-09-10      发布日期:  2022-09-10
ZTFLH:  TB34  
基金资助: 齐齐哈尔大学研究生创新项目(YJSCX2019031) ;黑龙江省自然科学基金优秀青年项目(YQ2019H034)
通讯作者:  *lange1979@163.com   
作者简介:  初红涛,工学博士,硕士研究生导师,齐齐哈尔大学教授。2002年7月和2005年3月分别于齐齐哈尔大学取得学士和硕士学位,2014年11月在哈尔滨工业大学化学工程与技术专业取得工学博士学位。主要研究方向为新型荧光探针的设计及应用。近年来发表学术论文20余篇。
引用本文:    
初红涛, 陈嘉琪, 鞠洁, 姚冬, 于淼, 苏立强. 改性树枝状纤维形二氧化硅的应用研究进展[J]. 材料导报, 2022, 36(17): 20100122-7.
CHU Hongtao, CHEN Jiaqi, JU Jie, YAO Dong, YU Miao, SU Liqiang. Application Research Progress of Modified Dendritic Fiber Silica. Materials Reports, 2022, 36(17): 20100122-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100122  或          http://www.mater-rep.com/CN/Y2022/V36/I17/20100122
1 Stober W, Fink A, Bohn E. Journal of Colloid & Interface Science, 1968, 26(1),62.
2 Kresge C T, Leonowicz M E, Rrth W J, et al. Nature, 1992, 359(6397),710.
3 Xiaotian G, Sibo W, Biao Y, et al. Journal of Colloid and Interface Science, 2020, 561, 801.
4 Ling J, Huan P. Chinese Chemical Letters, 2020, 31(9), 300.
5 Zhao D Y, Feng J L, Huo Q S, et al. Science, 1998, 279(5350), 548.
6 Polshettiwar V, Cha D, Zhang X, et al. Angewandte Chemie Internatio-nal Edition, 2010, 49(50), 9652.
7 Maity A,Das A, Sen D, et al. Langmuir, 2017, 33(48), 3774.
8 Du X, Qiao S Z. Small, 2015, 11(4), 392.
9 Maity A, Polshettiwar V. Chemsuschem, 2017, 10(20), 75.
10 Wang Y B, Du X, Shi S H, et al. Journal of Materials Chemistry A,2019,7, 5111.
11 Wang Y B, Liu Z, Shi S H, et al. Journal of Inorganic Materials, 2018,33(12), 18 (in Chinese)
王亚斌, 刘忠, 史时辉,等.无机材料学报, 2018, 33(12), 18.
12 Yang H, Huang C, Liao S J. Progress in Chemical Industry, 2014, 33(8), 2089 (in Chinese)
杨惠, 黄超, 廖世军.化工进展, 2014, 33(8), 2089.
13 Bayal N, Singh B, Singh R, et al. Scientific Reports, 2016, 6, 24888.
14 Febriyanti E, Suendo V, Mukti R R, et al. Langmuir, 2016, 32(23), 5802.
15 Wang Y, Hu K, He J, et al. RSC Advances, 2019, 9(43), 24783.
16 Yu K J, Zhang X B,Tong H W, et al. Materials Letters,2013,106(9), 151.
17 Zhang W, Li S, Zhang J, et al. Microporous and Mesoporous Materials, 2019, 282, 15.
18 Ali Z, Tian L, Zhang B, et al. New Journal of Chemistry, 2017, 41(16), 8222.
19 Hassankhani A, Sadeghzades M, Zhiant R. RSC Advances, 2018, 8(16), 8761.
20 Maryam M, Nasrin S, Fateman A M H. Journal of Electroanalytical Che-mistry, 2019, 848, 113272.
21 Chen P P, Qiao X Y, Liu J H, et al. Sensors & Actuators B Chemical, 2018, 267, 525.
22 Qu Q. Analytical Chemistry, 2015, 87(19), 9631.
23 Qu Q, Si Y, Xuan H, et al. Journal of Chromatography A, 2018,1540, 31.
24 Tian H J, Xue Y, Chen Q M, et al. Chromatography, 2017, 35(5), 473 (in Chinese)
田华君, 薛芸, 陈巧梅,等.色谱, 2017, 35(5), 473.
25 Wang H, Suo J Q, Wang C Y, et al. Journal of Advanced Chemistry, 2020, 41(8), 1731 (in Chinese)
王欢, 所金泉, 王春艳,等.高等学校化学学报, 2020, 41(8), 1731.
26 Hamid M, Muhamed Y, Triwahyono S, et al. Inorganic Chemistry, 2018, 57(10), 5859.
27 Singh R, Belgamwar R, Dhiman M,et al. Journal of Materials Chemistry: B, 2018, 6(11), 1600.
28 Hang L G, Zheng Y Y. Materials Engineering,2018, 46(10), 135 (in Chinese)
黄连根,郑玉婴.材料工程, 2018, 46(10), 135.
29 Tian Y, Yan L, Sun Z, et al. RSC Advances, 2015, 5, 106068.
30 Hasan R, Bukhari S N, Jusoh R, et al. Materials Today: Proceedings, 2018,5(10), 21574.
31 Kushwaha A K, Guptan N. Arabian Journal of Chemistry, 2017, 10(S1), S81.
32 Heidari A, Younesi H, Mehraban Z. The Chemical Engineering Journal, 2009, 153(1-3), 70.
33 Soltani R D C, Khorramabadi G S, Khataee A R, et al. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45(3), 973.
34 Guo Y, Liu D, Zhao Y, et al. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 537.
35 Ge L, Wang B D, Sun Q, et al. Microporous & Mesoporous Materials, 2017, 252, 105.
36 Zarei F, Marjani A, Soltani R. European Polymer Journal, 2019, 119, 400.
37 Roozbeh S, Azam M, Mina H, et al. Chemosphere, 2020, 239, 124735.
38 Lee Y R, Zhang S, Yu K, et al. Chemical Engineering Journal, 2019, 378, 122.
39 Yang P, Liu Q, Liu J, et al. Journal of Hazardous Materials, 2018, 363, 248.
40 Roozbeh S, Azam M, Mohamad R S M, et al. Journal of Molecular Liquids, 2019, 294, 111617.
41 Huang W Y, Yu X, Tang J P, et al. Microporous and Mesoporous Mate-rials, 2015, 217, 225.
42 Dong Z, Le X, Li X, et al. Applied Catalysis B Environmental, 2014, 158, 129.
43 Guo J H,Liu Y C,Ma H, et al. Catalysis Letters, 2020, 150(7), 2003.
44 Zahar M, Alireza N C. Renewable Energy, 2020, 147, 2229.
45 Zahar M, Alireza N C. Chemical Engineering Journal, 2019, 361, 450.
46 Zhang S, Qian Y, Ahn W S. Chinese Journal of Catalysis, 2019, 40, 1704.
47 Javaid S, Swati R, Manisha S,et al. RSC Advances, 2020, 10(14), 8140.
48 Singh B, Polshettiwar V. Journal of Materials Chemistry A, 2016, 4(18), 7071.
49 Li S, Jiang X, Sun H, et al. Journal of Membrane Science, 2019, 586, 185.
50 Huang X, Tao Z, Praskavich J C, et al. Langmuir, 2014, 30(36), 10886.
51 Follmann H D M, Oliveira O N, Martins A C, et al. Journal of Colloid and Interface Science, 2020, 567, 92.
52 Cha B G, Jeong J H, Kim J. ACS Central Science, 2018, 4(4), 484.
53 Soleymani J, Hasanzadeh M, Shadjou N, et al. Journal of Pharmaceutical and Biomedical Analysis, 2020, 180, 113077.
54 Abbasay L, Mohammadzadeh A, Hasanzadeh M, et al. International Journal of Biological Macromolecules, 2020, 154, 584.
[1] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[2] 李世杰, 王智辉, 代琳心, 李振瑞, 王佳军, 马建锋, 刘杏娥. 银/尿素改性竹质活性炭的制备及甲醛净化与抗菌性能[J]. 材料导报, 2022, 36(Z1): 22030103-6.
[3] 赵颖平, 陶平, 李文华, 闵秀博, 余忆玄, 孙天军. 载体改性提高船舶尾气锰铬催化剂的脱硝性能[J]. 材料导报, 2022, 36(Z1): 21080248-6.
[4] 汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
[5] 刘利, 诸力维, 彭喜林, 周洋, 张楷彬, 孙浩荻, 李晓林. 污水中非正磷酸盐处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22050093-5.
[6] 帅树乙, 李婧, 何婷, 陈琴, 陈璐, 黎阳. 光催化氧化铝泡沫陶瓷的制备及性能[J]. 材料导报, 2022, 36(Z1): 21060249-5.
[7] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[8] 王秀超, 秦莹莹, 郭红革. 生物基可降解包装薄膜的研究进展[J]. 材料导报, 2022, 36(Z1): 21070279-8.
[9] 张子健, 姜锋, 于春晓. 长碳链聚酰胺PA1012的改性研究进展[J]. 材料导报, 2022, 36(Z1): 21100088-6.
[10] 吕博, 陈连喜. 磷酸功能化空心二氧化硅的制备及其对Cd2+的吸附[J]. 材料导报, 2022, 36(9): 21030132-7.
[11] 刘宇, 李彬, 丁二卯, 雷小丽, 宁平. 新型氧化剂材料脱硫脱硝的研究进展[J]. 材料导报, 2022, 36(9): 20070192-8.
[12] 戎鑫, 李建军, 但宏兵, 薛长国, 高明, 李梦, 刘银. 磁化水的特性、机理及应用研究进展[J]. 材料导报, 2022, 36(9): 21020032-7.
[13] 王长龙, 赵高飞, 王永波, 张苏花, 郑永超, 霍泽坤, 王绍熙, 任真真, 邹佳一. 水库底泥和电石渣高温改性钢渣的研究[J]. 材料导报, 2022, 36(9): 21040178-7.
[14] 江幸, 孔勇, 赵志扬, 沈晓冬. 球形气凝胶材料的研究进展[J]. 材料导报, 2022, 36(8): 20040032-8.
[15] 李娜, 陈泽东, 王晶晶, 张凯, 武文斐. 基于氧化铈的低温NH3-SCR催化剂的研究进展[J]. 材料导报, 2022, 36(8): 20080137-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed