Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 21090225-8    https://doi.org/10.11896/cldb.21090225
  高分子与聚合物基复合材料 |
正六边形玻璃纤维多胞结构面外准静态压缩试验
张奇1, 张震东1,*, 任杰1, 姚琳2, 吴林华1
1 南京理工大学机械工程学院,南京 210094
2 南京模拟技术研究所,南京 210094
Out-of-plane Quasi-static Compression Test of a Regular Hexagonal Glass Fiber Multi-cell Structure
ZHANG Qi1, ZHANG Zhendong1,*, REN Jie1, YAO Lin2, WU Linhua1
1 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2 Nanjing Institute of Analog Technology, Nanjing 210094, China
下载:  全 文 ( PDF ) ( 74177KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作提出几种正六边形玻璃纤维多胞结构,采用热压模具工艺制备多胞结构试件,利用万能试验机对其进行面外准静态压缩试验,分析了不同壁厚的多胞结构破坏模式和吸能特性。试验结果表明:准静态压缩过程中,多胞结构壁厚较小时表现为局部屈曲破坏模式,壁厚不小于0.8 mm时,表现为渐进破坏模式;与相对平均压缩载荷相比,五种壁厚的多胞结构试件的实际平均压缩载荷均有显著提高,且实际平均压缩载荷随着胞元数量和胞元壁厚增加而增大;比吸能随胞元壁厚增加而增大,且胞元壁厚从0.6 mm增加到0.8 mm时,多胞结构由局部屈曲破坏模式转变为渐进破坏模式,比吸能显著提高,可提升5.62~9.74 J/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张奇
张震东
任杰
姚琳
吴林华
关键词:  热压模具工艺  多胞结构  准静态压缩  吸能  破坏模式    
Abstract: In this work, several regular hexagonal glass fiber multi-cell structures were proposed. The multi-cell structure specimens were prepared by hot pressing mold technology, and the universal testing machine was used to conduct an out-of-plane quasi-static compression test to analyze the failure mode and energy absorption characteristics of multi-cell structures with different wall thicknesses. The test results show that in the process of quasi-static compression, when the wall thickness of the multi-cell structure is small, it appears as a local buckling failure mode, and when the wall thickness is ≥ 0.8 mm, it appears as a progressive failure mode; compared with the relative average compressive load, the actual average compressive load of the multi-cell structure specimens with five wall thicknesses is significantly improved, and the actual average compressive load increases with the increase of the number of cells and the cell wall thickness; the specific energy absorption increases with the increase of the cell wall thickness, and when the cell wall thickness increases from 0.6 mm to 0.8 mm, the multicellular structure changes from a local buckling failure mode to a progressive failure mode, and the specific energy absorption is significantly increased, which can increase 5.62—9.74 J/g.
Key words:  hot pressing mold technology    multi-cell structure    quasi-static compression    energy absorption    failure mode
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TB332  
基金资助: 国家自然科学基金(11902160)
通讯作者:  * 张震东,南京理工大学讲师,2011年6月,于河南理工大学获机械设计制造及自动化学士学位,2012年6月,于南京理工大学获机械制造硕士学位,2016年6月,于南京理工大学获兵器科学与技术博士学位。主持国家自然科学基金,发表代表性专著5篇,主要研究领域为冲击载荷下复合材料及其多胞结构的力学行为。zzd1157@163.com   
作者简介:  张奇,2018年6月,于长春工业大学获机械制造及自动化学士学位,于2019年就读南京理工大学,现为博士研究生,主要研究方向为多胞结构冲击动力学。
引用本文:    
张奇, 张震东, 任杰, 姚琳, 吴林华. 正六边形玻璃纤维多胞结构面外准静态压缩试验[J]. 材料导报, 2023, 37(7): 21090225-8.
ZHANG Qi, ZHANG Zhendong, REN Jie, YAO Lin, WU Linhua. Out-of-plane Quasi-static Compression Test of a Regular Hexagonal Glass Fiber Multi-cell Structure. Materials Reports, 2023, 37(7): 21090225-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090225  或          http://www.mater-rep.com/CN/Y2023/V37/I7/21090225
1 Wang X Q, Zhang Z D, Ma D W, et al. Acta Materiae Compositae Sinica, 2021, 38(9), 2887(in Chinese).
王雪琴, 张震东, 马大为, 等. 复合材料学报, 2021, 38(9), 2887.
2 Du Y T, Song C P, Xiong J, et al. Composites Science and Technology, 2019, 174, 94.
3 Ren Z K, Liu L W, Liu Y J, et al. Polymer Testing, 2020, 85, 106387.
4 Palanivelu S, Van Paepegem W, Degrieck J, et al. Composite Structures, 2010, 93(2), 992.
5 Hu D Y, Zhang C, Ma X B, et al. Composites Part A, 2016, 90, 489.
6 Mou H L, Feng Z Y, Xie J, et al. International Journal of Nonlinear Sciences and Numerical Simulation, 2020, 21(6), 623.
7 Mamalis A G, Manolakos D E, Ioannidis M B, et al. International Journal of Crashworthiness, 2003, 8(3), 247.
8 Mamalis A G, Manolakos D E, Demosthenous G A, et al. Thin-Walled Structures, 1996, 24(4), 335.
9 Majid J O, Ali C B. International Journal of Crashworthiness, 2021, 26(2), 147.
10 Kim J, Jeong M, Böhm H, et al. Composites Part B, 2020, 181, 107590.
11 Song J, Chen Y, Lu G X. Thin-Walled Structures, 2012, 54, 65.
12 Sahu S K, Badgayan N D, Sreekanth P S R. Materials Today:Procee-dings, 2020, 27(Pt 2), 798.
13 Wang S L, Wang H Q, Ding Y Y, et al. Thin-Walled Structures, 2020, 151, 106739.
14 Hamada H, Ramakrishna S. Composites Science and Technology, 1995, 55(3), 211.
15 Farley G L, Jones R M. Journal of Composite Materials, 1992, 26(1), 37.
16 Quek S C, Waas A M, Hoffman J, et al. Composite Structures, 2001, 52(1), 103.
[1] 陈东方, 武海鹏, 梁钒, 周骐, 宋显刚, 田爱琴. 六边形Al-复合材料薄壁混杂管准静态压缩实验和吸能机理分析[J]. 材料导报, 2022, 36(Z1): 22020120-6.
[2] 张奇, 张震东, 任杰. 正六边形玻璃纤维增强复合材料多胞结构准静态压缩试验研究[J]. 材料导报, 2021, 35(z2): 573-578.
[3] 张光成, 郭超群, 闫治坤, 周芸, 左孝青. 泡沫钢填充管的准静态压缩变形模式、力学性能及吸能特性[J]. 材料导报, 2021, 35(24): 24158-24163.
[4] 喻宣瑞, 姚国文, 范伟庆. 交变荷载和氯盐环境作用下钢绞线的腐蚀疲劳性能研究[J]. 材料导报, 2021, 35(20): 20087-20091.
[5] 周宏元, 王业斌, 王小娟, 石南南. 泡沫混凝土压缩性能尺寸效应研究[J]. 材料导报, 2021, 35(18): 18076-18082.
[6] 李景文, 乔建刚, 付旭, 刘晓立. 岩土锚固吸能锚杆支护材料/结构及其力学性能研究进展[J]. 材料导报, 2019, 33(9): 1567-1574.
[7] 杨旭东, 许佳丽, 邹田春, 赵乃勤, 纵荣荣. 泡沫铝填充金属薄壁管复合结构的研究进展[J]. 材料导报, 2019, 33(21): 3637-3643.
[8] 罗伟铭, 石少卿, 廖瑜, 孙建虎. 成层式铝蜂窝夹芯结构冲击响应试验研究[J]. 《材料导报》期刊社, 2018, 32(8): 1328-1332.
[9] 戎翔, 邓安仲, 李飞, 李丰恺. 柱胞夹芯复合材料设计加工及吸能性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 822-827.
[10] 刘小可, 俞科静, 钱坤. 剪切增稠胶/聚氨酯泡沫复合材料的制备与力学性能[J]. 材料导报, 2018, 32(18): 3255-3260.
[11] 徐义库,杨 蕾,宋绪丁,陈永楠,爨洛菲,张 朝,郝建民,刘 林. 闭孔泡沫铝微弧氧化及其性能研究[J]. 《材料导报》期刊社, 2018, 32(10): 1655-1658.
[12] 罗伟铭, 石少卿, 陈自鹏, 孙建虎. 层间配置对成层式铝蜂窝吸能特性的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 82-87.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed