Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24158-24163    https://doi.org/10.11896/cldb.20080301
  金属与金属基复合材料 |
泡沫钢填充管的准静态压缩变形模式、力学性能及吸能特性
张光成, 郭超群, 闫治坤, 周芸, 左孝青
昆明理工大学材料科学与工程学院,昆明 650093
Quasi-Static Compression Deformation Mode,Mechanical Property and Energy Absorption Performance of Steel Foam Filled Tubes
ZHANG Guangcheng, GUO Chaoqun, YAN Zhikun, ZHOU Yun, ZUO Xiaoqing
Faculty of Materials Science and Engineering, Kunming University of Science Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 6159KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以430L不锈钢粉为原料,采用粉末冶金法制备泡沫钢,然后通过物理粘结法将泡沫钢芯与薄壁金属管结合,分别对空管和泡沫金属填充管进行准静态轴向压缩实验,并对比分析空管和填充管的压缩变形模式、力学性能和吸能性能。研究表明:在压缩变形过程中,空铝管和泡沫钢填充铝管均呈现轴对称变形模式,而空钢管呈现非轴对称变形模式,泡沫钢填充钢管呈现混合变形模式;泡沫钢填充铝管抗压强度约为56.09 MPa,比泡沫铝填充铝管高1.69倍;泡沫钢填充钢管抗压强度高达116.03 MPa,比泡沫铝填充钢管高1.05倍;当应变量为40%时,泡沫钢填充铝管单位体积能量吸收值为27.93 MJ/m3,是泡沫铝填充铝管吸能值的2.91倍,泡沫钢填充钢管单位体积能量吸收值为35.98 MJ/m3,是泡沫铝填充钢管吸能值的1.15倍;当泡沫钢填充铝管的壁厚由1 mm增大到2 mm时,泡沫钢填充管的平台应力值增大1.36倍;在应变量为40%时,单位体积能量吸收值增大1.26倍,同时泡沫钢填充管在压缩过程中的变形褶皱数随着壁厚的增加而减少。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张光成
郭超群
闫治坤
周芸
左孝青
关键词:  泡沫钢  薄壁管  填充管  静态压缩  吸能值  平台应力值    
Abstract: 430L stainless steel powder is used as the raw materials to prepare steel foams by powder metallurgy, and then the steel foam core is combined with the thin-walled metal tubes by physical bonding. The quasi-static axial compression experiments were performed on the empty tubes and the metal foam-filled tubes respectively. The compression deformation mode, mechanical properties and energy absorption perfor-mance of the empty and filled tubes were compared and analyzed. The results show that during the compression deformation process, both the empty aluminum tubes and the steel foam-filled aluminum tubes present axisymmetric deformation mode, and while the empty steel tubes present non-axisymmetric deformation mode, the steel foam-filled steel tubes present mixed deformation mode. The compressive strength of steel foam-filled aluminum tubes is about 56.09 MPa, which is 1.69 times higher than aluminum foam-filled aluminum tubes; the compressive strength of steel foam-filled steel tubes is as high as 116.03 MPa, which is 1.05 times higher than aluminum foam-filled steel tubes. When the strain is 40%, the energy absorption value per unit volume of the steel foam-filled aluminum tubes is 27.93 MJ/m3, which is 2.91 times that of the aluminum foam-filled aluminum tubes, and the energy absorption value per unit volume of the steel foam-filled steel tubes is 35.98 MJ/m3, which is 1.15 times that of aluminum foam-filled steel tubes. When the wall thickness of the steel foam-filled aluminum tubes increases from 1 mm to 2 mm, the platform stress value of the steel foam-filled tubes increases by about 1.36 times. When the strain is 40%, the energy absorption per unit volume increases by about 1.26 times, and the number of deformation folds of the steel foam-filled tubes during the compression process decreases with the increase of the wall thickness.
Key words:  steel foam    thin-walled tube    filled tube    static compression    energy absorption    platform stress value
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  TG142  
基金资助: 国家自然科学基金项目(51861020)
通讯作者:  zyuncrystal@qq.com   
作者简介:  张光成,昆明理工大学材料科学与工程学院硕士研究生,研究方向为金属多孔材料。周芸,2006年获昆明理工大学材料学博士研究生学位,现在昆明理工大学材料科学与工程学院工作,教授,硕士研究生导师。2001年至2002年在美国南加州大学访学,2008年至2009年在英国利物浦大学访学。多年来,承担或作为主要成员完成国家级、省级及企业合作项目20余项。其中作为主要成员参与完成的云南省自然科学基金重点项目“泡沫金属新材料技术的应用基础研究” 获云南省自然科学奖二等奖。发表论文60余篇,获国家发明专利20余项,翻译专著一部《多孔泡沫金属》(Handbook of Cellular Metals:Production,processing,Application),化学工业出版社出版,2005。近年来主要研究方向为金属多孔材料、金属复合材料的制备、组织结构及性能表征。
引用本文:    
张光成, 郭超群, 闫治坤, 周芸, 左孝青. 泡沫钢填充管的准静态压缩变形模式、力学性能及吸能特性[J]. 材料导报, 2021, 35(24): 24158-24163.
ZHANG Guangcheng, GUO Chaoqun, YAN Zhikun, ZHOU Yun, ZUO Xiaoqing. Quasi-Static Compression Deformation Mode,Mechanical Property and Energy Absorption Performance of Steel Foam Filled Tubes. Materials Reports, 2021, 35(24): 24158-24163.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080301  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24158
1 Yu Y, Cao Z K, Li M, et al. Materials Science Forum, 2018, 933, 209.
2 Yang X D,Xu J L, Zou T C,et al. Materials Reports A: Review Papers, 2019,33(11),3637(in Chinese).
杨旭东,许佳丽,邹田春,等. 材料导报:综述篇,2019,33(11),3637.
3 Gan N, Feng Y, Yin H, et al. Composite Structures, 2016, 157, 303.
4 Huang R, Liu Z F, Lu G Y, et al. Journal of Taiyuan University of Technology, 2016,47(1),101(in Chinese).
黄睿,刘志芳,路国运,等. 太原理工大学学报,2016,47(1),101.
5 Najibi A, Ghazifard P, Alizadeh P. Journal of Sandwich Structures & Materials, 2021, 23(5), 1635.
6 Wang D H. Analysis and structural optimization of energy absorbing pro-perties of foam filled composites. Master's Thesis,Hunan University, China,2017(in Chinese).
王多华.泡沫填充复合材料结构吸能性能分析及结构优化.硕士学位论文,湖南大学,2017.
7 Sun G, Song X, Baek S, et al. Structural and Multidisciplinary Optimization, 2014, 49(6), 897.
8 Taherishargh M, Vesenjak M, Belova I V, et al. Materials & Design, 2016, 99, 356.
9 Yang X D, An T, Wu Z Q,et al. Composite Structures, 2020, 245, 1.
10 Hangai Y, Saito M, Utsunomiya T, et al. Materials, 2014, 7(9), 6796.
11 Li S C,Yang X D,An T, et al. Journal of Aeronautical Materials, 2019,39(5),120(in Chinese).
李思超,杨旭东,安涛,等. 航空材料学报,2019,39(5),120.
12 Movahedi N, Linul E. Materials Letters, 2017, 206, 182.
13 Kavi H, Toksoy A K, Guden M, et al. Materials & Design, 2006, 27(4), 263.
14 Duarte I, Krstulovic-Opara L, Vesenjak M, et al. Composite Structures, 2018, 192, 184.
15 Duarte I, Vesenjak M, Krstulovic-Opara L, et al. Composite Structures, 2016, 154, 231.
16 Duarte I, Vesenjak M, Krstulovic-Opara L, et al. Composite Structures, 2015, 124, 128.
17 Yang K,Xu P. Modern Manufacturing Engineering, 2018(1),11(in Chinese).
杨昆,徐平. 现代制造工程,2018(1),11.
18 Li Z, Chen R, Lu F, et al. Thin-walled Structures, 2018, 124, 343.
19 Zhang W B, Yan L L, Zhao X, et al. Rare Metal Materials and Engineering, 2019, 48(12),3911(in Chinese).
张万波,闫雷雷,赵雪,等. 稀有金属材料与工程,2019,48(12),3911.
20 Patel S K, Singh V P, Yadav S K, et al. Soft Materials, 2019, 17(1), 14.
21 Ma J. Research on the mechanical behaviors of tubes filled with aluminum foam. Master's Thesis,Guangxi University, China,2014(in Chinese).
马骏. 泡沫铝填充管结构力学性能研究.硕士学位论文,广西大学,2014.
22 Hu D, Wang Y, Song B, et al. International Journal of Crashworthiness, 2018, 23(4), 417.
23 Rajak D K, Mahajan N N, Linul E. Journal of Alloys and Compounds, 2019, 775, 675.
24 Xu J, Yang X, He C, et al. Journal of Materials Science, 2020,55,7910
25 Xu L,Jia D W,Yu Q F. Computer Aided Engineering, 2013,22(S2),1(in Chinese).
徐磊,贾大伟,俞麒峰. 计算机辅助工程,2013,22(S2),1.
26 Alexander J M. Quarterly Journal of Mechanics & Applied Mathematics, 1960, 13(1),10.
27 Andrews K R F, England G L, Ghani E.International Journal of Mechanical Sciences, 1983, 25(9-10),687.
28 Guillow S R, Lu G, Grzebieta R H, et al. International Journal of Mechanical Sciences,2001,43(9), 2103.
29 Mamalis A G, Manolakos D E, Baldoukas A K, et al. Thin-Walled Structures, 1991, 12 (1),17.
30 Gibson L J, Ashby M F. Celluar solid: structure and properties, Cambridge University Press, UK, 1997.
31 Alexander J M. Quarterly Journal of Mechanics & Applied Mathematics, 1960, 8, 10.
[1] 张奇, 张震东, 任杰. 正六边形玻璃纤维增强复合材料多胞结构准静态压缩试验研究[J]. 材料导报, 2021, 35(z2): 573-578.
[2] 杨旭东, 许佳丽, 邹田春, 赵乃勤, 纵荣荣. 泡沫铝填充金属薄壁管复合结构的研究进展[J]. 材料导报, 2019, 33(21): 3637-3643.
[3] 徐义库,杨 蕾,宋绪丁,陈永楠,爨洛菲,张 朝,郝建民,刘 林. 闭孔泡沫铝微弧氧化及其性能研究[J]. 《材料导报》期刊社, 2018, 32(10): 1655-1658.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed