Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4150-4158    https://doi.org/10.11896/cldb.19100140
  金属与金属基复合材料 |
表面带金属层的复合材料层合板低速冲击数值模拟
崔俊杰1,2, 郭章新1,2,3, 朱明1,3, 李永存1,3, 栾云博1,3, 杨强1,3,4
1 太原理工大学机械与运载工程学院,应用力学研究所,太原 030024
2 西安交通大学航天学院,机械结构强度与振动国家重点实验室,西安 710049
3 太原理工大学材料强度与结构冲击山西省重点实验室,太原 030024
4 力学国家级实验教学示范中心(太原理工大学),太原 030024
Numerical Simulation of Low-velocity Impact of Composite Laminates with Metal Layers
CUI Junjie1,2, GUO Zhangxin1,2,3, ZHU Ming1,3, LI Yongcun1,3, LUAN Yunbo1,3, YANG Qiang1,3,4
1 Institute of Applied Mechanics, College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
3 Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China
4 National Demonstration Center for Experimental Mechanics Education (Taiyuan University of Technology), Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 7990KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 使用Abaqus/Explicit建立表面带金属层的复合材料层合板和复合材料裸板低速冲击有限元模型,与已有文献对比验证结果的可靠性,研究结果对复合抗弹结构有很好的借鉴和参考价值。采用Johnson-Cook本构关系模拟铝合金和钛合金层的力学行为,选用Hashin准则对复合材料层内损伤进行失效判断,用二次应力准则来模拟粘结层Cohesive单元的层间失效。结果表明,相同铺层与冲击能量下,表面带铝合金层合板对内部纤维的保护性能优于表面带钛合金层合板,表面带钛合金层合板的抗冲击性能优于复合材料裸板;[§/0°/90°/0°/90°/0°]s铺层层合板的抗冲击性能优于[§/-45°/90°/0°/45°/-45°]s铺层层合板的抗冲击性能;在子弹刚冲破层合板与子弹完全离开层合板阶段,表面带铝合金层合板对子弹动能吸收率最大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔俊杰
郭章新
朱明
李永存
栾云博
杨强
关键词:  复合材料层合板  低速冲击  铺层顺序  冲击能量  冲击深度    
Abstract: Abaqus/Explicit is used to establish the low-speed impact finite element models of composite laminates and bare plates with metal layers on the surface, and the reliability of the results is verified by comparison with the existing literatures. The research results have good reference value for composite anti-elastic structures. Johnson-Cook constitutive relation are adopted to simulate the mechanical behavior of aluminum alloy and titanium alloy layer, Hashin criterion of damage is chosen in the composite material layer failure judgment, with secondary stress criterion to simulate the failure of bonding layer Cohesive unit. The results show that the protection performance of aluminum alloy laminate on the surface is better than that of titanium alloy laminate on the surface, and the anti-impact performance of titanium alloy laminate on the surface is better than that of bare laminate on the surface. The impact resistance of [§/0/90/0/90/0]s laminated plywood is better than the impact resistance of [§/-45/90/0/45/-45]s laminated plywood. At the stage when the bullet just broke through the laminate and the bullet completely left the laminate, the maximum kinetic energy absorption of the bullet was obtained by aluminum alloy laminate on the surface.
Key words:  composite laminates    low-velocity impact    layer order    impact energy    impact depth
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TB330.1  
基金资助: 国家自然科学基金(11602160;11402160;21501129);山西省高等学校科技创新项目(2017117);西安交通大学机械结构强度与振动国家重点实验室开放课题(SV2019-KF-01);山西省 “1331工程” 重点创新团队项目
通讯作者:  guozhangxin@tyut.edu.cn   
作者简介:  崔俊杰,2017年9月至今于太原理工大学机械与运载工程学院攻读硕士学位,主要从事复合材料结构与力学性能分析,发表论文5篇。
郭章新,太原理工大学机械与运载工程学院,副教授,硕士研究生导师。2013年3月毕业于西北工业大学,获得力学博士学位,同年加入太原理工大学工作至今。主要从事复合材料及其结构的力学性能研究,纳米材料的力学性能分析,在国内外重要学术期刊上发表论文30余篇。
引用本文:    
崔俊杰, 郭章新, 朱明, 李永存, 栾云博, 杨强. 表面带金属层的复合材料层合板低速冲击数值模拟[J]. 材料导报, 2021, 35(4): 4150-4158.
CUI Junjie, GUO Zhangxin, ZHU Ming, LI Yongcun, LUAN Yunbo, YANG Qiang. Numerical Simulation of Low-velocity Impact of Composite Laminates with Metal Layers. Materials Reports, 2021, 35(4): 4150-4158.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19100140  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4150
1 Chen J F, Morozov E V, Shankar K.Composites: Part A, 2014, 61(6),185.
2 Xie W B, Zhang W, Jiang X W.Explosion and Shock Waves, 2018, 38(3),647(in Chinese).
谢文波, 张伟, 姜雄文.爆炸与冲击, 2018, 38(3),647.
3 Zhang D T, Sun Y, Chen L, et al. Materials & Design, 2013, 50(9),750.
4 Chen J F, Morozov E V, Shankar K. Composite Structures, 2012, 94(12),78.
5 Jia G Z, Ha Y, Pang B J, et al. Explosion and Shock Waves, 2016, 36(4),433(in Chinese).
贾古寨, 哈跃, 庞宝君, 等.爆炸与冲击, 2016, 36(4),433.
6 Attia O, Kinloch A J, Matthews F L.Composites Sciences and Technology, 2011, 63(10),1463.
7 He W, Guan Z D, Wang J.Acta Materiae Compositae Sinica, 2014, 2(31),485(in Chinese).
何为, 关志东, 王进. 复合材料学报, 2014, 2(31),485.
8 Cai Y, Zhang B, Li Z Y. Computer Aided Engineering, 2017, 26(6),59(in Chinese).
蔡艳, 张斌, 李振友.计算机辅助工程, 2017, 26(6),59.
9 Carti D R, Irving P E. Composites: Part A, 2002, 33(4),483.
10 Naik N K, Joglekar M N, Arya H, et al. Advanced Composite Materials, 2004, 12(4),261.
11 Deng L W, Chen X W, Wang H P, et al. Fiber Composites, 2013, 3(17),17(in Chinese).
邓立伟, 陈新文, 王海鹏, 等. 纤维复合材料, 2013, 3(17),17.
12 Cui H P, Wen D W, Zhang A L.Journal of Aerospace Power, 2015, 30(10),2330(in Chinese).
崔海坡, 温卫东, 张阿龙.航空动力学报, 2015, 30(10),2330.
13 Xu S, Chen P H. Composites Part A Applied Science and Manufacturing, 2002, 33(3),361.
14 Johnson G R, Cook W H.Engineering Fracture Mechanics, 1985, 21(1),31.
15 Xiao X K, Wang Y P, Wang S, et al.Journal of Vibration and Shock, 2015, 34(22),87(in Chinese).
肖新科, 王要沛, 王爽, 等. 振动与冲击, 2015, 34(22),87.
16 Chen M. Mechanical properties test and dynamic material model study of TC4 titanium alloy. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China,2012 (in Chinese).
陈敏. TC4钛合金力学性能测试及动态材料模型研究. 硕士学位论文, 南京航空航天大学, 2012.
17 Wang B L,Wu S P, Liang J.Failure Analysis and Prevention, 2006(2),19(in Chinese).
王宝来, 吴世平, 梁军.失效分析与预防, 2006(2),19.
18 Zhang D, Xu L, Ye J. Journal of Composite Materials, 2013, 47(6-7),763.
19 Zhang Y, Zhu P, Lai X M, et al. Acta Materiae Compositae Sinica, 2006, 23(2),150(in Chinese).
张彦, 朱平, 来新民, 等.复合材料学报, 2006, 23(2),150.
20 Shor O, Vaziri R. Engineering Fracture Mechanics, 2015, 146,121.
[1] 武海鹏, 王威力. 复合材料层合板低速冲击下剩余强度的评价[J]. 材料导报, 2020, 34(Z2): 598-602.
[2] 王心淼, 陈利, 焦伟, 赵世波. 多轴向三维机织复合材料的低速冲击力学性能[J]. 材料导报, 2020, 34(14): 14191-14197.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed