Grading Assessment of the Integrity of Passivated Films in 316L Stainless Steel Using Electrochemical and Color Detection
ZHAO Xiaoyan1, WANG Dongying2, CHENG Congqian1,*, CAO Tieshan1, LIU Baojun1, YAO Jingwen2, ZHAO Jie1
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China 2 Nuclear Power Pump Industry Co., Ltd., Shenyang Blower Works Group Corporation, Shenyang 110869, China
Abstract: The quality inspection and evaluation of passivation and damage of stainless steel equipment in nuclear power and aerospace engineering in the high temperature and high salt marine environment and a method of grading the integrity of passive film based on chromaticity image analysis were proposed. Taking 316L stainless steel with different passivation and its damage state as the research object, through the analysis of red chromaticity image and electrochemical corrosion behavior detection, the relationship between chromaticity and corrosion resistance was established, and the grade range was obtained. The results show that the chromaticity increased with the increase of passive film damage and decreased with the increase of self-passivation time. There were two peaks in the histogram of secondary local damage. The chromaticity percen-tage and area percentage showed the characteristics of double logarithm linear two-stage. Potentiodynamic polarization and impedance showed that the pitting potential and interface reaction impedance decreased with the increase of damage degree. The corrosion resistance decreased with the increase of chromogenic chromaticity, and finally three chromaticity grades of 316L stainless steel passivation film integrity was obtained. This can provide a theoretical basis for the quality inspection and grading evaluation of stainless steel passivation films.
通讯作者:
*凌海涛,安徽工业大学冶金工程学院副教授、博士研究生导师。2017年博士毕业于北京科技大学,主要从事洁净钢与冶金过程模拟仿真等方面研究工作。发表学术论文30余篇,包括MMTB、ISIJ International、Steel Research International、Journal of Iron and Steel Research International、《工程科学学报》等期刊,获授权发明专利10余项。cqcheng@dlut.edu.cn
赵晓燕, 王冬颖, 程从前, 曹铁山, 刘宝军, 姚景文, 赵杰. 利用电化学和显色检测法分级评估316L不锈钢钝化膜完整性[J]. 材料导报, 2024, 38(3): 22050337-5.
ZHAO Xiaoyan, WANG Dongying, CHENG Congqian, CAO Tieshan, LIU Baojun, YAO Jingwen, ZHAO Jie. Grading Assessment of the Integrity of Passivated Films in 316L Stainless Steel Using Electrochemical and Color Detection. Materials Reports, 2024, 38(3): 22050337-5.
1 Dong C F, Luo H, Xiao K, et al. Journal of Sichuan University (Engineering Science Edition), 2012, 44(3), 179 (in Chinese). 董超芳, 骆鸿, 肖葵, 等. 四川大学学报(工程科学版), 2012, 44(3), 179. 2 Liu Y Y, Zhang H X, Wang H L, et al. Journal of Northwestern Polytechnical University, 2019, 37(SI), 106 (in Chinese). 刘亚鹏, 张慧霞, 王洪伦, 等. 西北工业大学学报, 2019, 37(SI), 106. 3 Ye M J, Bian C H, Liu H Q, et al. Totlal Corrosion Control, 2021, 35(5), 56 (in Chinese). 叶鸣钧, 边春华, 刘洪群, 等. 全面腐蚀控制, 2021, 35(5), 56. 4 Liu B J, Cheng C Q, Cao T S, et al. Surface Technology, 2021, 50(1), 347 (in Chinese). 刘宝军, 程从前, 曹铁山, 等. 表面技术, 2021, 50(1), 347. 5 Weirich T D, Srinivasan J, Taylor J M, et al. Journal of the Electroche-mical Society, 2019, 166(11), C3477. 6 Liu W, Wang D, Chen X, et al. Corrosion Engineering Science and Technology, 2016, 51(7), 545. 7 Xia D H, Song S, Behnamian Y, et al. Journal of the Electrochemical Society, 2020, 167(8), 081507. 8 Guo J G, Chen H, Li J R, et al. Materials Reports, 2021, 35(Z2), 391 (in Chinese). 郭金刚, 陈红, 李俊荣, 等. 材料导报, 2021, 35(Z2), 391. 9 李德福, 刘炀, 刘洁, 等. GB/T 25150-2010,工业设备化学清洗中奥氏体不锈钢钝化膜质量的测试方法-蓝点法[S], 蓝星环境工程有限公司中国蓝星(集团)股份有限公司. 10 Cheng C Q, Cao T S, Song G Y, et al. Corrosion Engineering Science and Technology, 2015, 50, 346. 11 Cheng C Q, Yang S K, Zhao J. Nuclear Engineering and Design, 2016, 297, 267. 12 应红, 费克勋, 林泽泉, 等. NB/T 25079-2018, 核电厂常规岛设备和管道防腐蚀工程质量验收规范[S], 苏州热工研究院有限公司. 13 Cheng C Q, Zhao J, Cao T S, et al. Corrosion Science, 2013, 70, 235. 14 Xia D H, Song S Z, Lei T, et al. Journal of Materials Science & Techno-logy, 2020, 53(18), 148. 15 Xu Y, Li H, Li S L, et al. Corrosion Science, 2016, 111, 275. 16 Jahanshahi M R, Masri S F, Padgett C W, et al. Machine Vision and Applications, 2013, 24(2), 227. 17 Pereira M C, Silva J, Acciari H A, et al. Materials Sciences & Applications, 2012, 3(5), 287. 18 Zimer A M, Rios E C, Mendes P C D, et al. Corrosion Science, 2011, 53(10), 3193. 19 Salgado J A M, Chavarín J U, Cruz D M. International Journal of Electrochemical Science, 2012, 7(2), 1107. 20 Exbrayat L, Salaluk S, Uebel M, et al. ACS Applied Nano Materials, 2019. 21 Nishimoto M, Ogawa J, Muto I, et al. Corrosion Science, 2016, 106, 298. 22 Cheng C Q, Fu Q Q, Cao T S, et al. Journal of Materials Engineering, 2013(8), 65 (in Chinese). 程从前, 付琴琴, 曹铁山, 等. 材料工程, 2013(8), 65. 23 Yang S K, Cheng C Q, Zhao J. Total Corrosion Control, 2016, 30(1), 28 (in Chinese). 杨树凯, 程从前, 赵杰. 全面腐蚀控制, 2016, 30(1), 28. 24 Cheng C Q, Cao T S, Sang G Y, et al. Atomic Energy Science and Technology, 2013(10), 872 (in Chinese). 程从前, 曹铁山, 宋冠宇, 等. 原子能科学技术, 2013, 47(10), 1872. 25 Vayer M, Reynaud I, Erre R. Journal of Materials Science, 2000, 35(10), 2581. 26 Cheng C Q, Zhao J, Cao T S, et al. Corrosion Science, 2013, 70, 235. 27 Yang Q Y, Cheng C Q, Ruan F P, et al. Journal of Nondestructive Eva-luation, 2020, 39(1), 1. 28 Olsson C O A, Landolt D. Electrochimica Acta, 2003, 48(9), 1093. 29 Luo H, Dong C F, Xiao K, et al. Applied Surface Science, 2011, 258(1), 631. 30 Olsson C, Landolt D. Electrochimica Acta, 2003, 48(9), 1093.