Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 22020127-6    https://doi.org/10.11896/cldb.22020127
  金属与金属基复合材料 |
不同补焊次数下ZG06Cr13Ni4Mo的组织演变规律
苏允海*, 魏祖勇, 张桂清, 张祥稳
沈阳工业大学材料科学与工程学院,沈阳 110870
Microstructure Evolution Law of ZG06Cr13Ni4Mo with Different Repair Welding Numbers
SU Yunhai*, WEI Zuyong, ZHANG Guiqing, ZHANG Xiangwen
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
下载:  全 文 ( PDF ) ( 21587KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了明确不同补焊次数下ZG06Gr13Ni4Mo马氏体不锈钢补焊区显微组织的演变规律,采用钨极气体保护电弧焊(Gas tungsten arc wel-ding,GTAW焊)对40 mm厚ZG06Gr13Ni4Mo板进行一次、二次补焊,每次补焊完成后进行600 ℃下2 h的回火。分别采用OM、SEM、EBSD和TEM检测母材和不同补焊次数下补焊区的显微组织变化,研究补焊区域的组织演变规律。结果表明:补焊区的物相主要由马氏体和少量逆变奥氏体组成,逆变奥氏体以细条状分布在马氏体边界及基体内。补焊区中逆变奥氏体的含量随补焊次数的增加而增多,而且焊缝区逆变奥氏体的含量大于热影响区。此外,补焊区的晶粒有细化的趋势,相对于母材,一次及二次焊缝区的晶粒尺寸细化了45.2%和61.9%,焊缝区的晶粒尺寸比热影响区分别细化了40.8%和48.3%,逆变奥氏体的大小约为马氏体的50.0%。补焊区域织构的取向由铸件的〈101〉转变为各向异性,小角度晶界减少,大角度晶界增多。随补焊次数增加,补焊接头的硬度、抗拉强度逐渐下降,塑性得到改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏允海
魏祖勇
张桂清
张祥稳
关键词:  补焊  超低碳马氏体不锈钢  逆变奥氏体  背散射电子衍射    
Abstract: In order to clarify the evolution law of microstructure in the repair welding area of ZG06Gr13Ni4Mo martensitic stainless steel under different repair times, GTAW was used to repair 40 mm ZG06Gr13Ni4Mo once and twice, temper at 600 ℃ for 2 hours after each repairing. OM, SEM, EBSD and TEM were used to detect the microstructure changes of the base metal and the repair area under different repair times, and the microstructure evolution law of the repair area was studied. The results show that the phase of the repaired area is mainly composed of martensite and a small amount of reversed austenite, which is distributed in the boundary of martensite and matrix in the form of thin laths. The content of reversed austenite in the repair welding areas increases with the increase of repair welding times, and the content of reversed austenite in the weld zone is greater than that in heat affected zone. In addition, the grain size in the repaired joint tends to refinement. Compared with the base metal, the grain size in the once and twice weld zone is refined by 45.2% and 61.9%, while the grain size in the weld zone is refined by 40.8% and 48.3% respectively compared with that in the heat affected zone, and the size of reversed austenite is about 50% of that of martensite. The orientation of texture changes from 〈101〉 to anisotropy, the small angle grain boundary decreases and the large angle grain boundary increases.With the increase in the number of repairing welds, the hardness and strength of the repaired joints decrease gradually, and the yield strength and plasticity increase gradually.
Key words:  repair welding    ultra low carbon martensitic stainless steel    reversed austenite    electron back-scattered diffraction
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  TG455  
基金资助: 辽宁省服务地方重点项目(LFGD2019001)
通讯作者:  *苏允海,沈阳工业大学材料科学与工程学院教授、博士研究生导师。2003年沈阳工业大学材料成型与控制工程专业本科毕业,2009年沈阳工业大学材料加工工程博士毕业后到沈阳工业大学大学工作至今。目前主要从事焊接新材料及新工艺、焊接材料及表面强化、材料失效分析、多场复合焊接技术关键技术研究及应用。在SCI及EI发表论文60余篇。su_yunhai@sut.edu.cn   
引用本文:    
苏允海, 魏祖勇, 张桂清, 张祥稳. 不同补焊次数下ZG06Cr13Ni4Mo的组织演变规律[J]. 材料导报, 2023, 37(16): 22020127-6.
SU Yunhai, WEI Zuyong, ZHANG Guiqing, ZHANG Xiangwen. Microstructure Evolution Law of ZG06Cr13Ni4Mo with Different Repair Welding Numbers. Materials Reports, 2023, 37(16): 22020127-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020127  或          http://www.mater-rep.com/CN/Y2023/V37/I16/22020127
1 Koistinen D P, Marburger R E. Acta Metallurgica, 1959, 7(1),59.
2 Gao Z, Wang C, Liu Y. International Journal of Electrochemical Science, 2015, 10(8),6487.
3 Yin Y, Kang P, Zhang R H, et al. China Welding, 2020, 30(1), 21.
4 Hang T Y, Wang Z M, Yang G H,et al.Electromechanical Technology of Hydropower Station, 2021, 44(1),50(in Chinese).
韩天宇, 王智民, 杨光辉, 等. 水电站机电技术, 2021, 44(1), 50.
5 Thibault D, Bocher P, Thomas M, et al. Materials Science & Engineering A, 2010, 527(23), 6205.
6 Hassan A J, Boukharouba T, Miroud D, et al. China Welding, 2021, 29(4), 7.
7 Kang M, Jiang M, Sridar S, et al. Journal of Materials Engineering and Performance, 2022, 31,254.
8 Ahmad Z, Shahid M, Abbas M. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(4), 1233.
9 Su Y H, Wei Z Y, Li G, et al. Coatings, 2022,12(1), 1.
10 Zhang G Q, Tong X, Wu G H, et al. Materials Science and Engineering: A, 2021, 821, 141577.
11 Mirakhorli F, Cao X, Pham X T, et al. Materials Characterization, 2017, 123, 264.
12 Sanctis M D, Lovicu G, Valentini R, et al. Metallurgical & Materials Transactions A, 2015, 46(5),1878.
13 Wang P, Lu S P, Li D Z, et al. Acta Metallurgica Sinica, 2008, 44(6), 681.
14 Thibault D, Bocher P, Thomas M. Journal of Materials Processing Technology, 2009, 209(4), 2195.
15 Amrei M M, Monajati H, Thibault D, et al. Materials Characterization, 2016, 111, 128.
16 Liu Z C, Li Y M, Feng T C, et al. Microstructure identification of alloy stell. Beijing: Higher Education Press, China, 2017, pp. 143 (in Chinese).
刘宗昌,李一鸣,冯佃臣, 等.合金钢显微组织辨识. 高等教育出版社, 2017,pp. 143.
17 Zhang M, Wu W G, Chu Q L, et al. Transactions of the China Welding Institution, 2013, 34(8),4(in Chinese).
张敏, 吴伟刚, 褚巧玲,等.焊接学报, 2013, 34(8),4.
18 Liu L, Yang Z G, Zhang C. Journal of Alloys & Compounds, 2013, 577, 654.
19 Zhang Y, Zhang C, Yuan X, et al. Materials, 2019, 12(4),589.
20 Bilmes P D, Solari M, Llorente C L. Materials Characterization, 2001, 46(4),285.
21 Chen S, Hu F, Wang Y C, et al. Journal of Material Heat Treatment, 2020, 41(12),80 (in Chinese).
程石, 胡锋, 王亚超,等.材料热处理学报, 2020, 41(12), 80.
22 Li Z D, Cui Z D, Wang W Z, et al.Transactions of the China Welding Institution, 2019, 40(8), 89 (in Chinese).
李兆登, 崔振东, 王维珍,等. 焊接学报, 2019, 40(8), 89.
[1] 张兵宪, 杜明科, 雷龙宇, 张敏, 张志强. 补焊工艺对30CrMnSiA接头微观组织及性能的影响研究[J]. 材料导报, 2023, 37(16): 22020034-5.
[2] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[3] 张忠科, 赵早龙, 李德福, 郑江辉. 6082铝合金摩擦塞补焊接头微观组织与性能[J]. 材料导报, 2020, 34(16): 16094-16099.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed