Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22050337-5    https://doi.org/10.11896/cldb.22050337
  金属与金属基复合材料 |
利用电化学和显色检测法分级评估316L不锈钢钝化膜完整性
赵晓燕1, 王冬颖2, 程从前1,*, 曹铁山1, 刘宝军1, 姚景文2, 赵杰1
1 大连理工大学材料科学与工程学院,辽宁 大连 116024
2 沈阳鼓风机集团有限公司核电泵工业有限公司,沈阳 110869
Grading Assessment of the Integrity of Passivated Films in 316L Stainless Steel Using Electrochemical and Color Detection
ZHAO Xiaoyan1, WANG Dongying2, CHENG Congqian1,*, CAO Tieshan1, LIU Baojun1, YAO Jingwen2, ZHAO Jie1
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
2 Nuclear Power Pump Industry Co., Ltd., Shenyang Blower Works Group Corporation, Shenyang 110869, China
下载:  全 文 ( PDF ) ( 17137KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对核电和航天工程不锈钢设备服役在高温高盐海洋环境中钝化和损伤的质检评估,提出显色检测图像分析钝化膜完整性分级的方法。以不同钝化及其损伤状态的316L不锈钢为研究对象,通过显色检测的红色色度图像分析与电化学腐蚀行为检测,建立显色色度与耐蚀性的关系,并获得分级范围。结果表明,显色色度随钝化膜损伤程度增加而增大,随自钝化时间的延长而减小;二次局部损伤在直方图中具有双峰特征;色度百分比和面积百分比呈现双对数线性二阶段特征;动电位极化和阻抗表明,点蚀电位和界面反应阻抗随损伤程度的增加而减小;耐蚀性随显色色度的增加而下降;最终获得了316L不锈钢钝化膜完整性的三个色度等级范围。这可为不锈钢钝化膜质检分级评估提供理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵晓燕
王冬颖
程从前
曹铁山
刘宝军
姚景文
赵杰
关键词:  不锈钢  钝化膜损伤  化学钝化  显色检测    
Abstract: The quality inspection and evaluation of passivation and damage of stainless steel equipment in nuclear power and aerospace engineering in the high temperature and high salt marine environment and a method of grading the integrity of passive film based on chromaticity image analysis were proposed. Taking 316L stainless steel with different passivation and its damage state as the research object, through the analysis of red chromaticity image and electrochemical corrosion behavior detection, the relationship between chromaticity and corrosion resistance was established, and the grade range was obtained. The results show that the chromaticity increased with the increase of passive film damage and decreased with the increase of self-passivation time. There were two peaks in the histogram of secondary local damage. The chromaticity percen-tage and area percentage showed the characteristics of double logarithm linear two-stage. Potentiodynamic polarization and impedance showed that the pitting potential and interface reaction impedance decreased with the increase of damage degree. The corrosion resistance decreased with the increase of chromogenic chromaticity, and finally three chromaticity grades of 316L stainless steel passivation film integrity was obtained. This can provide a theoretical basis for the quality inspection and grading evaluation of stainless steel passivation films.
Key words:  stainless steel    passive film damage    chemical passivation    color detection
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TG457.11  
基金资助: 国家自然科学基金(51571051)
通讯作者:  *凌海涛,安徽工业大学冶金工程学院副教授、博士研究生导师。2017年博士毕业于北京科技大学,主要从事洁净钢与冶金过程模拟仿真等方面研究工作。发表学术论文30余篇,包括MMTB、ISIJ International、Steel Research International、Journal of Iron and Steel Research International、《工程科学学报》等期刊,获授权发明专利10余项。cqcheng@dlut.edu.cn   
作者简介:  王海军,安徽工业大学冶金工程学院副教授、硕士研究生导师,2017年毕业于钢铁研究总院钢铁冶金专业,主要研究领域为高效电工钢及连铸新技术开发。主持国家自然科学基金2项、企业产学研项目20余项,参与“十三五”重点基础材料技术提升与产业化重点专项1项、国家自然科学基金5项,发表学术论文30余篇。
引用本文:    
赵晓燕, 王冬颖, 程从前, 曹铁山, 刘宝军, 姚景文, 赵杰. 利用电化学和显色检测法分级评估316L不锈钢钝化膜完整性[J]. 材料导报, 2024, 38(3): 22050337-5.
ZHAO Xiaoyan, WANG Dongying, CHENG Congqian, CAO Tieshan, LIU Baojun, YAO Jingwen, ZHAO Jie. Grading Assessment of the Integrity of Passivated Films in 316L Stainless Steel Using Electrochemical and Color Detection. Materials Reports, 2024, 38(3): 22050337-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22050337  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22050337
1 Dong C F, Luo H, Xiao K, et al. Journal of Sichuan University (Engineering Science Edition), 2012, 44(3), 179 (in Chinese).
董超芳, 骆鸿, 肖葵, 等. 四川大学学报(工程科学版), 2012, 44(3), 179.
2 Liu Y Y, Zhang H X, Wang H L, et al. Journal of Northwestern Polytechnical University, 2019, 37(SI), 106 (in Chinese).
刘亚鹏, 张慧霞, 王洪伦, 等. 西北工业大学学报, 2019, 37(SI), 106.
3 Ye M J, Bian C H, Liu H Q, et al. Totlal Corrosion Control, 2021, 35(5), 56 (in Chinese).
叶鸣钧, 边春华, 刘洪群, 等. 全面腐蚀控制, 2021, 35(5), 56.
4 Liu B J, Cheng C Q, Cao T S, et al. Surface Technology, 2021, 50(1), 347 (in Chinese).
刘宝军, 程从前, 曹铁山, 等. 表面技术, 2021, 50(1), 347.
5 Weirich T D, Srinivasan J, Taylor J M, et al. Journal of the Electroche-mical Society, 2019, 166(11), C3477.
6 Liu W, Wang D, Chen X, et al. Corrosion Engineering Science and Technology, 2016, 51(7), 545.
7 Xia D H, Song S, Behnamian Y, et al. Journal of the Electrochemical Society, 2020, 167(8), 081507.
8 Guo J G, Chen H, Li J R, et al. Materials Reports, 2021, 35(Z2), 391 (in Chinese).
郭金刚, 陈红, 李俊荣, 等. 材料导报, 2021, 35(Z2), 391.
9 李德福, 刘炀, 刘洁, 等. GB/T 25150-2010,工业设备化学清洗中奥氏体不锈钢钝化膜质量的测试方法-蓝点法[S], 蓝星环境工程有限公司中国蓝星(集团)股份有限公司.
10 Cheng C Q, Cao T S, Song G Y, et al. Corrosion Engineering Science and Technology, 2015, 50, 346.
11 Cheng C Q, Yang S K, Zhao J. Nuclear Engineering and Design, 2016, 297, 267.
12 应红, 费克勋, 林泽泉, 等. NB/T 25079-2018, 核电厂常规岛设备和管道防腐蚀工程质量验收规范[S], 苏州热工研究院有限公司.
13 Cheng C Q, Zhao J, Cao T S, et al. Corrosion Science, 2013, 70, 235.
14 Xia D H, Song S Z, Lei T, et al. Journal of Materials Science & Techno-logy, 2020, 53(18), 148.
15 Xu Y, Li H, Li S L, et al. Corrosion Science, 2016, 111, 275.
16 Jahanshahi M R, Masri S F, Padgett C W, et al. Machine Vision and Applications, 2013, 24(2), 227.
17 Pereira M C, Silva J, Acciari H A, et al. Materials Sciences & Applications, 2012, 3(5), 287.
18 Zimer A M, Rios E C, Mendes P C D, et al. Corrosion Science, 2011, 53(10), 3193.
19 Salgado J A M, Chavarín J U, Cruz D M. International Journal of Electrochemical Science, 2012, 7(2), 1107.
20 Exbrayat L, Salaluk S, Uebel M, et al. ACS Applied Nano Materials, 2019.
21 Nishimoto M, Ogawa J, Muto I, et al. Corrosion Science, 2016, 106, 298.
22 Cheng C Q, Fu Q Q, Cao T S, et al. Journal of Materials Engineering, 2013(8), 65 (in Chinese).
程从前, 付琴琴, 曹铁山, 等. 材料工程, 2013(8), 65.
23 Yang S K, Cheng C Q, Zhao J. Total Corrosion Control, 2016, 30(1), 28 (in Chinese).
杨树凯, 程从前, 赵杰. 全面腐蚀控制, 2016, 30(1), 28.
24 Cheng C Q, Cao T S, Sang G Y, et al. Atomic Energy Science and Technology, 2013(10), 872 (in Chinese).
程从前, 曹铁山, 宋冠宇, 等. 原子能科学技术, 2013, 47(10), 1872.
25 Vayer M, Reynaud I, Erre R. Journal of Materials Science, 2000, 35(10), 2581.
26 Cheng C Q, Zhao J, Cao T S, et al. Corrosion Science, 2013, 70, 235.
27 Yang Q Y, Cheng C Q, Ruan F P, et al. Journal of Nondestructive Eva-luation, 2020, 39(1), 1.
28 Olsson C O A, Landolt D. Electrochimica Acta, 2003, 48(9), 1093.
29 Luo H, Dong C F, Xiao K, et al. Applied Surface Science, 2011, 258(1), 631.
30 Olsson C, Landolt D. Electrochimica Acta, 2003, 48(9), 1093.
[1] 孙涛, 王辉, 张蕾, 刘晓英, 赵宏刚, 蒋伟, 成鑫磊, 何小涌. 基于折减因子的奥氏体不锈钢螺栓高温应力-应变模型[J]. 材料导报, 2024, 38(5): 23080049-9.
[2] 吕润涛, 周张健, 白冰, 杨文. 耐老化马氏体时效不锈钢纳米析出相和逆变奥氏体调控研究进展[J]. 材料导报, 2024, 38(4): 22120065-7.
[3] 张勇, 王斌斌, 刘琛, 李斌强, 赵俊波, 李志文, 李哲, 赵春志, 王亮, 苏彦庆. 增材制造金属材料在海洋环境下的耐蚀性能——综述[J]. 材料导报, 2024, 38(23): 23080239-11.
[4] 侯娟, 刘慧, 陈亮, 闵师领, 蒋梦蕾. 选区激光熔化成形304L不锈钢氦泡长大与辐照硬化行为[J]. 材料导报, 2024, 38(2): 22050298-6.
[5] 郑志军, 郑翔. 基于激光重熔的SLM成形316L不锈钢温度场仿真及工艺优化[J]. 材料导报, 2024, 38(17): 23030304-7.
[6] 王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
[7] 陈宗平, 李健成, 周济. 内置碳钢不锈钢管海洋混凝土柱轴压试验及承载力计算[J]. 材料导报, 2024, 38(12): 22100018-9.
[8] 孙钢, 熊茹, 唐睿, 张乐福, 周张健. 含铝奥氏体不锈钢的强化相析出调控和蠕变性能研究进展[J]. 材料导报, 2023, 37(9): 21060054-7.
[9] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[10] 高圣伦, 孙彬, 程磊, 刘振宇. 排气系统用不锈钢在汽车尾气环境下的高温氧化行为[J]. 材料导报, 2023, 37(24): 22080197-7.
[11] 张志强, 楚昊然, 张天刚, 路学成, 张宇航, 郭志永. UNS S32750双相不锈钢焊接热影响区微观组织演变[J]. 材料导报, 2023, 37(21): 22050291-7.
[12] 王叶超, 肖遥, 胡芳馨, 杨鸿斌. 不锈钢催化电极在氧析出中的研究进展[J]. 材料导报, 2023, 37(20): 22040218-11.
[13] 程尚华, 李方亮, 张一琪, 武少杰, 程方杰. 氮在不锈钢GMAW电弧中的过渡规律及对焊缝组织和性能的影响[J]. 材料导报, 2023, 37(18): 22020113-6.
[14] 代一博, 罗兵兵, 房卫萍, 易耀勇, 胡永俊, 易朋. 高碳铬不锈钢电子束焊接头性能研究[J]. 材料导报, 2023, 37(17): 22040270-5.
[15] 苏允海, 魏祖勇, 张桂清, 张祥稳. 不同补焊次数下ZG06Cr13Ni4Mo的组织演变规律[J]. 材料导报, 2023, 37(16): 22020127-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed