Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22090275-8    https://doi.org/10.11896/cldb.22090275
  无机非金属及其复合材料 |
用于微波除冰的吸波骨料选择及路面吸波功能层设计
赵静1,2, 王选仓1,*, 辛磊3, 宋子豪1, 任俊儒4, 杨朝山4
1 长安大学公路学院,西安 710064
2 西安航空学院能源与建筑学院,西安 710077
3 中国水电建设集团十五工程局有限公司,西安 710064
4 中国人民解放军陆军勤务学院,重庆 401331
Optimization of Absorbing Aggregates for Microwave Deicing and Design of Concrete Pavement Absorbing Functional Layer
ZHAO Jing1,2, WANG Xuancang1,*, XIN Lei3, SONG Zihao1, REN Junru4, YANG Chaoshan4
1 School of Highway, Chang'an University, Xi'an 710064, China
2 School of Energy and Architecture, Xi'an Aeronautical Institute, Xi'an 710077, China
3 Sinohydro Corporation Engineering Bureau 15 Co., Ltd., Xi'an 710064, China
4 Army Logistical Academy of PLA, Chongqing 401331, China
下载:  全 文 ( PDF ) ( 34437KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相比传统除冰方式,微波可穿透冰层并选择性加热路面,进而破坏冰对路面的粘附性。针对现有吸波混凝土应用于整个面层,进而导致吸波骨料利用率不足的问题,本工作设计了一种具有吸波功能层的路面结构。首先综合对比分析了三种吸波骨料与石灰岩的微波升温特性、微波耐久性、骨料与水泥石粘附性以及经济性能,选择综合性能较好的吸波骨料;然后探究了不同粒径的吸波骨料的升温速率和替代石灰岩后其对混凝土力学性能的影响程度,以及不同厚度的吸波混凝土上、下表面温度及上下表面温度差变化规律,推荐了最佳的吸波骨料替换粒径及功能层厚度;最后研究了石墨掺量对微波均匀性及力学强度的影响,推荐了最佳石墨掺量。结果表明:在四种骨料中,磁铁矿的综合性能较好;磁铁矿的粒径为16~19 mm时升温速率最快,且其替换相应粒径的石灰岩所制备的吸波混凝土结构强度比普通混凝土高50%,吸波混凝土功能层设计厚度为5 cm可保证材料的最优利用率。同时,3%的石墨掺量可改善微波加热的均匀性并满足力学要求。研究结果可为微波除冰应用于道路及机场路面提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵静
王选仓
辛磊
宋子豪
任俊儒
杨朝山
关键词:  微波除冰  水泥混凝土路面  吸波功能层  升温性能  加热均匀性    
Abstract: Microwaves can easily penetrate the ice, selectively heat the pavement surface and destroy the adhesion of ice to the road surface, compared with the traditional deicing method. This work develops a novel microwave absorbing function layer of concrete pavement. Firstly, the microwave heating characteristics, microwave durability, aggregate-matrix interface bond adhesion, and the economics of absorbing aggregates and limestone were comprehensively analyzed. One absorbing aggregate with better comprehensive performance was determined. The heating rate of the various particle size of microwave absorbing aggregate, the influence of the mechanical properties of the concrete after limestone replacement, and the tendency of upper and lower surfaces and their temperature difference of the various thickness microwave absorbing concrete were explored. And the optimal replacement particle size and the thickness of the absorbing function layer were recommended. Finally, the effect of graphite content on microwave heating performance and mechanical strength was studied, and the optimal content was determined. The results show that magnetite has better comprehensive properties; magnetite with a particle size of 16—19 mm has the best heating rate, and the strength of the microwave absorbing concrete prepared by replacing the corresponding limestone is higher than that of ordinary concrete. The thickness of the microwave-absorbing concrete functional layer is 5 cm to ensure optimal material utilization. At the same time, 3% graphite content can improve the uniformity of microwave heating and satisfy the mechanical requirements. The research results can provide a reference for microwave deicing applications and road and airport pavement.
Key words:  microwave deicing    concrete pavement    microwave absorbing function layer    microwave heating performance    heating uniformity
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  U414  
基金资助: 军队后勤开放研究项目(CLJ19J021)
通讯作者:  *王选仓,长安大学二级教授、博士研究生导师,国务院政府特殊津贴专家,交通部“吴福-振华交通教育优秀教育奖”优秀教师。获省部级科技进步奖40余项,国家发明实用新型专利及软件著作权80余项,出版专著及教材7部,发表论文300余篇。wxc2005@163.com   
作者简介:  赵静,长安大学博士研究生,主要研究方向为微波道路除冰、机器学习在道路工程中的应用,发表国内外高水平论文9篇。
引用本文:    
赵静, 王选仓, 辛磊, 宋子豪, 任俊儒, 杨朝山. 用于微波除冰的吸波骨料选择及路面吸波功能层设计[J]. 材料导报, 2024, 38(12): 22090275-8.
ZHAO Jing, WANG Xuancang, XIN Lei, SONG Zihao, REN Junru, YANG Chaoshan. Optimization of Absorbing Aggregates for Microwave Deicing and Design of Concrete Pavement Absorbing Functional Layer. Materials Reports, 2024, 38(12): 22090275-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090275  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22090275
1 Tan Y Q, Zhang C, Xu H N, et al. China Journal of Highway and Transport, 2019, 32(4), 1(in Chinese).
谭忆秋, 张驰, 徐慧宁, 等. 中国公路学报, 2019, 32(4), 1.
2 Mohammad M K, Ehsan A D, Ali B. Construction and Building Materials, 2022, 324, 126625.
3 Ma D C, Liu C Q, Gui X. Journal of Harbin Institute of Technology, 2022, 54(9), 44(in Chinese).
马登成, 刘成启, 桂学. 哈尔滨工业大学学报, 2022, 54(9), 44.
4 Rao R, Fu J Y, Chan Y J, et al. Composites Part B:Engineering, 2018, 155, 187.
5 Gao J, Sha A M, Wang Z J, et al. Journal of Cleaner Production, 2017, 152, 429.
6 Liu X M, Zhao Y, Liu W Z, et al. Journal of Cleaner Production, 2022, 332, 130111.
7 Wang Z J, Gao J, Tao A, et al. Journal of Testing and Evaluation, 2014, 42, 20130118.
8 Hamid J, Mohammad K, Behnam J, et al. Construction and Building Materials, 2018, 174, 656.
9 Ding L T, Wang X C, Cui X Z, et al. Cold Regions Science and Technology, 2021, 181, 103176.
10 Liu J L, Xu J Y, Lu S, et al. Construction and Building Materials, 2019, 225, 55.
11 Liu J L, Xu J Y, Huang H, et al. Cold Regions Science and Technology, 2020, 174, 103064.
12 Lu S, Bai E L, Xu J Y, et al. Construction and Building Materials, 2021, 286, 122868.
13 Ding S M. Study on electromagnetic wave absorbing concrete and its key technologies. Ph. D. Thesis, Xidian University, China, 2010(in Chinese).
丁世敏. 电磁吸波混凝土材料关键技术研究. 博士学位论文, 西安电子科技大学, 2010.
14 Wang Z H, Bai E L, Yan P, et al. Acta Material Composite Sinica, DOI:10.13801/j.cnki.fhclxb.20220915.008(in Chinese).
王志航, 白二雷, 严平, 等. 复合材料学报, DOI:10.13801/j.cnki.fhclxb.20220915.008.
15 Guo H Y, Wang Z J, Huo J Y, et al. Journal of Cleaner Production, 2020, 273, 123090.
16 Huang Y, Hu X, Shi C J, et al. Materials Reports, 2023, 37(1), 1(in Chinese).
黄燕, 胡翔, 史才军, 等. 材料导报, 2023, 37(1), 1.
17 Zou X G, Ji H L, Yang X H, et al. Journal of Civil Engineering and Management, 2021, 38(6), 17(in Chinese).
邹相国, 姬和力, 杨新华, 等. 土木工程与管理学报, 2021, 38(6), 17.
18 Standish N, Worner H K, Obuchowski D Y. Powder Technology, 1991, 66, 225.
19 Amini A, Ohno K, Maeda T, et al. Powder Technology, 2018, 338, 101.
[1] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[2] 高英力, 李学坤, 代凯明, 余先明, 袁江. 超疏水仿生水泥混凝土路面防覆冰技术及效能评价*[J]. 《材料导报》期刊社, 2017, 31(14): 132-137.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed