Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 23010043-9    https://doi.org/10.11896/cldb.23010043
  高分子与聚合物基复合材料 |
不同形态回收碳纤维水泥基材料的力学与导电性能
王艳1,2,*, 高腾翔1, 张少辉3, 李文俊1, 牛荻涛3
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 西部绿色建筑国家重点实验室,西安 710055
3 西安建筑科技大学土木工程学院,西安 710055
Mechanical and Electrical Properties of Recycling Carbon Fiber Cement-based Materials with Different Forms
WANG Yan1,2,*, GAO Tengxiang1, ZHANG Shaohui3, LI Wenjun1, NIU Ditao3
1 School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 State Key Laboratory of Green Building in Western China, Xi'an 710055, China
3 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 8873KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将碳纤维生命周期内产生的预浸料、织物及复合材料废弃物通过切割与粉碎制备短切回收碳纤维(CRCF)、回收碳纤维球(RCFS)及回收碳纤维粉(RCFP),研究不同形态回收碳纤维对水泥基材料力学与导电性能的影响机理和规律。结果表明,CRCF阻裂作用与RCFP填充孔隙作用使水泥基材料抗压强度和抗折强度显著提升,但RCFS的团聚导致其提升效果不显著。CRCF在水泥基材料内部搭接形成导电通路,电阻率随CRCF掺量的增加而降低,下降幅度超过90%,且渗滤阈值的掺量随CRCF长度的增大而显著降低。RCFS掺入基体后以孤立的球状形态分散在基体中,RCFP表面残留的树脂会阻碍导电通路的形成,这两种形态的回收碳纤维水泥基材料的电阻率降低幅度均小于10.7%。将CRCF水泥基材料中的电阻分为纤维通路电阻、纤维接触电阻和隧道传输电阻,建立了导电模型,模型误差为9.24%~40.1%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艳
高腾翔
张少辉
李文俊
牛荻涛
关键词:  回收碳纤维形态  机械回收  水泥基复合材料  力学性能  导电性    
Abstract: The prepreg, fabric and composite waste generated during the life cycle of carbon fiber, were clipping and shredding into chopped recycling carbon fiber (CRCF), recycling carbon fiber sphere (RCFS) and recycling carbon fiber powder (RCFP), studying on mechanical and electrical properties of recycling carbon fiber reinforced cement-based materials with different forms. The crack arresting effect of CRCF and the pore filling effect of RCFP would all enhance the strength of the cement-based materials. While the agglomeration of RCFS resulted in an insignificant lifting effect. CRCF formed a conductive path inside the cement-based material. The resistivity decreased with the increase of CRCF content by more than 90%, and the content of percolation threshold decreased significantly with the increase of CRCF length. RCFS was dispersed in an isolated spherical form in the matrix, and the residual resin on the surface of RCFP hinders the formation of conductive paths, and the resistivity reduction of the two forms of recycled recycling carbon fiber reinforced cement-based composite materials was less than 10.7%. The conductive model is established by dividing its resistance into fiber contact resistance, fiber pathway resistance and tunnel transmission resistance. The model error is 9.24%—40.1%.
Key words:  form of recycling carbon fiber    mechanical recovery    cement-based composite materials    mechanical properties    electrical conductivity
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TU528  
基金资助: 国家优秀青年科学基金(52222806);国家自然科学基金(52078414);陕西省杰出青年科学基金(2022JC-20);陕西省教育厅科学研究计划重点项目(20JY037)
通讯作者:  * 王艳,西安建筑科技大学教授、博士研究生导师。2020年入选陕西省“特支计划”青年拔尖人才,2021年获陕西省杰出青年科学基金,2022年获国家优秀青年科学基金,现为教育部“现代混凝土结构安全性与耐久性”创新团队的核心成员。主要从事隧道与地下工程结构耐久性领域的研究工作,包括一般地质环境混凝土衬砌耐久性、高地热环境混凝土衬砌耐久性、隧道衬砌损伤的智能感知技术等。主持国家自然科学基金项目4项、省部级基金项目5项,发表学术论文60余篇。wangyanwjx@126.com   
引用本文:    
王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010043  或          http://www.mater-rep.com/CN/Y2024/V38/I9/23010043
1 Francisco F H. Energies, 2020, 13(22), 6015.
2 Lefeuvre A, Garnier S, Jacquemin L, et al. Resources, Conservation and Recycling, 2017, 125, 264.
3 Jiang Z. Optimal design of cfrp typical body parts for an electric vehicle. Master's Thesis, Jilin University, 2021 (in Chinese).
姜哲. 某电动汽车典型碳纤维车身零部件优化设计. 硕士学位论文, 吉林大学, 2021.
4 Wang J, Xu Y, Yang R Z, et al. Journal of Building Materials, 2022, 25(4), 344 (in Chinese).
王佳, 徐颖, 杨荣周, 等. 建筑材料学报, 2022, 25(4), 344.
5 Hu Q L, Duan Y F, Liu Z, et al. Acta Materiae Compositae Sinica, 2022, 39(1), 64 (in Chinese).
胡侨乐, 端玉芳, 刘志, 等. 复合材料学报, 2022, 39(1), 64.
6 Liu X, Wu T, Yang X, et al. Journal of Building Materials, 2019, 22(5), 700 (in Chinese).
刘喜, 吴涛, 杨雪, 等. 建筑材料学报, 2019, 22(5), 700.
7 Hai R, Zhang Y G, Yue F, et al. Journal of Building Materials, 2010, 13(3), 300 (in Chinese).
海然, 张玉国, 岳峰, 等. 建筑材料学报, 2010, 13(3), 300.
8 Tan Y Q, Liu K, Wang Y Y. Journal of Building Materials, 2019, 22(2), 278 (in Chinese).
谭忆秋, 刘凯, 王英园. 建筑材料学报, 2019, 22(2), 278.
9 Galao O, Bañón L, Baeza F, et al. Materials, 2016, 9(4), 281.
10 Wang Y L, Zhao X H, Zhu D L, et al. Bulletin of the Chinese Ceramic Society, 2013, 32(9), 1817 (in Chinese).
王玉林, 赵晓华, 朱德良, 等. 硅酸盐通报, 2013, 32(9), 1817.
11 Wu L J, Shen G Z, Xu Z, et al. Journal of Building Materials, 2006(5), 603 (in Chinese).
午丽娟, 沈国柱, 徐政, 等. 建筑材料学报, 2006(5), 603.
12 Meng F, Olivetti E A, Zhao Y, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(8), 9854.
13 Nguyen H, Carvelli V, Fujii T, et al. Construction and Building Mate-rials, 2016, 126, 321.
14 Faneca G, Segura I, Torrents J M. Cement and Concrete Composites, 2018, 92, 135.
15 Ma C, Sánchez-Rodríguez D, Kamo T. Polymer Degradation and Stability, 2020, 178, 109199.
16 Wang Y, Zhang S, Luo D, et al. Composites Part B: Engineering, 2019, 173, 106853.
17 Zhang L, Wang H C, Li H, et al. Chinese Journal of Applied Chemistry, 2020, 37(12), 1357 (in Chinese).
张璐, 王海常, 李华, 等. 应用化学, 2020, 37(12), 1357.
18 Aravindan P, Becagli F, Longana M L, et al. Journal of Composites Science, 2020, 4(2), 68.
19 Hu W J, Zhong M J, Yang Y, et al. Materials Reports, 2021, 35(S2), 627 (in Chinese).
胡炜杰, 钟明建, 杨营, 等. 材料导报, 2021, 35(S2), 627.
20 Goergen C, Klingler A, Grishchuk S, et al. Key Engineering Materials, 2019, 809, 521.
21 Hanaoka T, Ikematsu H, Takahashi S, et al. Composites Part B: Engineering, 2022, 231, 109560.
22 Cao J F, Bai S L, Qin W Z, et al. Acta Materiae Compositae Sinica, 2023, 40(3), 1229 (in Chinese).
曹建凡, 白树林, 秦文贞, 等. 复合材料学报, 2023, 40(3), 1229.
23 Hao S, He L, Liu J, et al. Polymers, 2021, 13(8), 1231.
24 Zhou W J, Lan W J, Zuo X B, et al. Journal of Yantai University (Na-tural Science and Engineering Edition), 2012, 25(1), 65 (in Chinese).
周文键, 蓝文坚, 左晓宝, 等. 烟台大学学报(自然科学与工程版), 2012, 25(1), 65.
25 Zuo L, Yang J C, Zhao H Y, et al. Bulletin of the Chinese Ceramic So-ciety, 2018, 37(10), 3103 (in Chinese).
左联, 杨进超, 赵华宇, 等. 硅酸盐通报, 2018, 37(10), 3103.
26 Han B, Ding S, Yu X. Measurement, 2015, 59, 110.
27 Zhang T X. Effect of waste carbon fiber on mechanical properties and electrical conductivity of concrete. Master's Thesis, Xi'an University of Architecture and Technology, China, 2022 (in Chinese).
张彤昕. 废弃碳纤维对混凝土力学性能与导电性能影响研究. 硕士学位论文, 西安建筑科技大学, 2022.
28 Cheng J Q, Wang W G, Han J. Journal of Liaoning Petrochemical University, 2021, 41(3), 34 (in Chinese).
程健强, 王文广, 韩杰. 辽宁石油化工大学学报, 2021, 41(3), 34.
29 López-Buendía A M, Romero-Sánchez M D, Climent V, et al. Cement and Concrete Research, 2013, 54, 29.
30 Guo C H, Tang W, Liu S H. Bulletin of the Chinese Ceramic Society, 2017, 36(10), 3531 (in Chinese).
郭传慧, 汤婉, 刘数华. 硅酸盐通报, 2017, 36(10), 3531.
31 Zhang Q Y. Bulletin of the Chinese Ceramic Society, 2003(3), 22 (in Chinese).
张其颖. 硅酸盐通报, 2003(3), 22.
32 Donnini J, Bellezze T, Corinaldesi V. Journal of Building Engineering, 2018, 20, 8.
33 Shang G X. Fiber dispersion and conductive performance experimental research on carbon fiber cement-based composites. Master's Thesis, Zhengzhou University, China, 2015 (in Chinese).
尚国秀. 碳纤维水泥基复合材料纤维分散性及导电性能试验研究. 硕士学位论文, 郑州大学, 2015.
34 Liu X Y. The relationship between the pore fillability of hydrating cementitious materials and mechanical property of blend portland cement. Master's Thesis, South China University of Technology, China, 2015 (in Chinese).
刘向阳. 复合硅酸盐水泥水化过程中孔隙填充能力与其力学性能的关系. 硕士学位论文, 华南理工大学, 2015.
35 Wang Y, Zhang T X, Guo B B, et al. Acta Materiae Compositae Sinica, 2022, 39(6), 2855 (in Chinese).
王艳, 张彤昕, 郭冰冰, 等. 复合材料学报, 2022, 39(6), 2855.
36 Han R J, Cheng Z Q, Gao Y, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(1), 34 (in Chinese).
韩瑞杰, 程忠庆, 高屹, 等. 硅酸盐通报, 2020, 39(1), 34.
37 Weng Y B, Zhao R H, Xu A, et al. Concrete, 2019(4), 91 (in Chinese).
翁余斌, 赵若红, 徐安, 等. 混凝土, 2019(4), 91.
38 Pan Z C, Wang D L, Ma R J, et al. Computers and Concrete, 2018, 22(6), 551.
39 Lin J, Zhao Q, Chen H, et al. Powder Technology, 2021, 392, 459.
40 Tarasevich Y Y, Eserkepov A V, Vodolazskaya I V. Journal of Applied Physics, 2022, 132, 29.
41 Xu W, Lan P, Jiang Y, et al. Carbon, 2020, 161, 392.
42 Yao W, Wang R Q. Acta Materiae Compositae Sinica, 2006, 23(5), 121 (in Chinese).
姚武, 王瑞卿. 复合材料学报, 2006, 23(5), 121.
43 Xu J, Zhong W, Yao W. Journal of Materials Science, 2010, 45(13), 3538.
44 Wen S, Chung D D L. Cement and Concrete Research, 2006, 36(10), 1879.
45 Xu J, Yao W, Wang R. Cement and Concrete Composites, 2011, 33(3), 444.
46 Kerekes R J, Schell C J. Journal of Pulp and Paper Science, 1992, 18(1), 32.
47 Ramanathan T. Composites Science and Technology, 2005, 65(1), 1.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[5] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[6] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[7] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[8] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[9] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[10] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[11] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[12] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[13] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[14] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[15] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed