Mechanical and Electrical Properties of Recycling Carbon Fiber Cement-based Materials with Different Forms
WANG Yan1,2,*, GAO Tengxiang1, ZHANG Shaohui3, LI Wenjun1, NIU Ditao3
1 School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China 2 State Key Laboratory of Green Building in Western China, Xi'an 710055, China 3 School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Abstract: The prepreg, fabric and composite waste generated during the life cycle of carbon fiber, were clipping and shredding into chopped recycling carbon fiber (CRCF), recycling carbon fiber sphere (RCFS) and recycling carbon fiber powder (RCFP), studying on mechanical and electrical properties of recycling carbon fiber reinforced cement-based materials with different forms. The crack arresting effect of CRCF and the pore filling effect of RCFP would all enhance the strength of the cement-based materials. While the agglomeration of RCFS resulted in an insignificant lifting effect. CRCF formed a conductive path inside the cement-based material. The resistivity decreased with the increase of CRCF content by more than 90%, and the content of percolation threshold decreased significantly with the increase of CRCF length. RCFS was dispersed in an isolated spherical form in the matrix, and the residual resin on the surface of RCFP hinders the formation of conductive paths, and the resistivity reduction of the two forms of recycled recycling carbon fiber reinforced cement-based composite materials was less than 10.7%. The conductive model is established by dividing its resistance into fiber contact resistance, fiber pathway resistance and tunnel transmission resistance. The model error is 9.24%—40.1%.
1 Francisco F H. Energies, 2020, 13(22), 6015. 2 Lefeuvre A, Garnier S, Jacquemin L, et al. Resources, Conservation and Recycling, 2017, 125, 264. 3 Jiang Z. Optimal design of cfrp typical body parts for an electric vehicle. Master's Thesis, Jilin University, 2021 (in Chinese). 姜哲. 某电动汽车典型碳纤维车身零部件优化设计. 硕士学位论文, 吉林大学, 2021. 4 Wang J, Xu Y, Yang R Z, et al. Journal of Building Materials, 2022, 25(4), 344 (in Chinese). 王佳, 徐颖, 杨荣周, 等. 建筑材料学报, 2022, 25(4), 344. 5 Hu Q L, Duan Y F, Liu Z, et al. Acta Materiae Compositae Sinica, 2022, 39(1), 64 (in Chinese). 胡侨乐, 端玉芳, 刘志, 等. 复合材料学报, 2022, 39(1), 64. 6 Liu X, Wu T, Yang X, et al. Journal of Building Materials, 2019, 22(5), 700 (in Chinese). 刘喜, 吴涛, 杨雪, 等. 建筑材料学报, 2019, 22(5), 700. 7 Hai R, Zhang Y G, Yue F, et al. Journal of Building Materials, 2010, 13(3), 300 (in Chinese). 海然, 张玉国, 岳峰, 等. 建筑材料学报, 2010, 13(3), 300. 8 Tan Y Q, Liu K, Wang Y Y. Journal of Building Materials, 2019, 22(2), 278 (in Chinese). 谭忆秋, 刘凯, 王英园. 建筑材料学报, 2019, 22(2), 278. 9 Galao O, Bañón L, Baeza F, et al. Materials, 2016, 9(4), 281. 10 Wang Y L, Zhao X H, Zhu D L, et al. Bulletin of the Chinese Ceramic Society, 2013, 32(9), 1817 (in Chinese). 王玉林, 赵晓华, 朱德良, 等. 硅酸盐通报, 2013, 32(9), 1817. 11 Wu L J, Shen G Z, Xu Z, et al. Journal of Building Materials, 2006(5), 603 (in Chinese). 午丽娟, 沈国柱, 徐政, 等. 建筑材料学报, 2006(5), 603. 12 Meng F, Olivetti E A, Zhao Y, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(8), 9854. 13 Nguyen H, Carvelli V, Fujii T, et al. Construction and Building Mate-rials, 2016, 126, 321. 14 Faneca G, Segura I, Torrents J M. Cement and Concrete Composites, 2018, 92, 135. 15 Ma C, Sánchez-Rodríguez D, Kamo T. Polymer Degradation and Stability, 2020, 178, 109199. 16 Wang Y, Zhang S, Luo D, et al. Composites Part B: Engineering, 2019, 173, 106853. 17 Zhang L, Wang H C, Li H, et al. Chinese Journal of Applied Chemistry, 2020, 37(12), 1357 (in Chinese). 张璐, 王海常, 李华, 等. 应用化学, 2020, 37(12), 1357. 18 Aravindan P, Becagli F, Longana M L, et al. Journal of Composites Science, 2020, 4(2), 68. 19 Hu W J, Zhong M J, Yang Y, et al. Materials Reports, 2021, 35(S2), 627 (in Chinese). 胡炜杰, 钟明建, 杨营, 等. 材料导报, 2021, 35(S2), 627. 20 Goergen C, Klingler A, Grishchuk S, et al. Key Engineering Materials, 2019, 809, 521. 21 Hanaoka T, Ikematsu H, Takahashi S, et al. Composites Part B: Engineering, 2022, 231, 109560. 22 Cao J F, Bai S L, Qin W Z, et al. Acta Materiae Compositae Sinica, 2023, 40(3), 1229 (in Chinese). 曹建凡, 白树林, 秦文贞, 等. 复合材料学报, 2023, 40(3), 1229. 23 Hao S, He L, Liu J, et al. Polymers, 2021, 13(8), 1231. 24 Zhou W J, Lan W J, Zuo X B, et al. Journal of Yantai University (Na-tural Science and Engineering Edition), 2012, 25(1), 65 (in Chinese). 周文键, 蓝文坚, 左晓宝, 等. 烟台大学学报(自然科学与工程版), 2012, 25(1), 65. 25 Zuo L, Yang J C, Zhao H Y, et al. Bulletin of the Chinese Ceramic So-ciety, 2018, 37(10), 3103 (in Chinese). 左联, 杨进超, 赵华宇, 等. 硅酸盐通报, 2018, 37(10), 3103. 26 Han B, Ding S, Yu X. Measurement, 2015, 59, 110. 27 Zhang T X. Effect of waste carbon fiber on mechanical properties and electrical conductivity of concrete. Master's Thesis, Xi'an University of Architecture and Technology, China, 2022 (in Chinese). 张彤昕. 废弃碳纤维对混凝土力学性能与导电性能影响研究. 硕士学位论文, 西安建筑科技大学, 2022. 28 Cheng J Q, Wang W G, Han J. Journal of Liaoning Petrochemical University, 2021, 41(3), 34 (in Chinese). 程健强, 王文广, 韩杰. 辽宁石油化工大学学报, 2021, 41(3), 34. 29 López-Buendía A M, Romero-Sánchez M D, Climent V, et al. Cement and Concrete Research, 2013, 54, 29. 30 Guo C H, Tang W, Liu S H. Bulletin of the Chinese Ceramic Society, 2017, 36(10), 3531 (in Chinese). 郭传慧, 汤婉, 刘数华. 硅酸盐通报, 2017, 36(10), 3531. 31 Zhang Q Y. Bulletin of the Chinese Ceramic Society, 2003(3), 22 (in Chinese). 张其颖. 硅酸盐通报, 2003(3), 22. 32 Donnini J, Bellezze T, Corinaldesi V. Journal of Building Engineering, 2018, 20, 8. 33 Shang G X. Fiber dispersion and conductive performance experimental research on carbon fiber cement-based composites. Master's Thesis, Zhengzhou University, China, 2015 (in Chinese). 尚国秀. 碳纤维水泥基复合材料纤维分散性及导电性能试验研究. 硕士学位论文, 郑州大学, 2015. 34 Liu X Y. The relationship between the pore fillability of hydrating cementitious materials and mechanical property of blend portland cement. Master's Thesis, South China University of Technology, China, 2015 (in Chinese). 刘向阳. 复合硅酸盐水泥水化过程中孔隙填充能力与其力学性能的关系. 硕士学位论文, 华南理工大学, 2015. 35 Wang Y, Zhang T X, Guo B B, et al. Acta Materiae Compositae Sinica, 2022, 39(6), 2855 (in Chinese). 王艳, 张彤昕, 郭冰冰, 等. 复合材料学报, 2022, 39(6), 2855. 36 Han R J, Cheng Z Q, Gao Y, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(1), 34 (in Chinese). 韩瑞杰, 程忠庆, 高屹, 等. 硅酸盐通报, 2020, 39(1), 34. 37 Weng Y B, Zhao R H, Xu A, et al. Concrete, 2019(4), 91 (in Chinese). 翁余斌, 赵若红, 徐安, 等. 混凝土, 2019(4), 91. 38 Pan Z C, Wang D L, Ma R J, et al. Computers and Concrete, 2018, 22(6), 551. 39 Lin J, Zhao Q, Chen H, et al. Powder Technology, 2021, 392, 459. 40 Tarasevich Y Y, Eserkepov A V, Vodolazskaya I V. Journal of Applied Physics, 2022, 132, 29. 41 Xu W, Lan P, Jiang Y, et al. Carbon, 2020, 161, 392. 42 Yao W, Wang R Q. Acta Materiae Compositae Sinica, 2006, 23(5), 121 (in Chinese). 姚武, 王瑞卿. 复合材料学报, 2006, 23(5), 121. 43 Xu J, Zhong W, Yao W. Journal of Materials Science, 2010, 45(13), 3538. 44 Wen S, Chung D D L. Cement and Concrete Research, 2006, 36(10), 1879. 45 Xu J, Yao W, Wang R. Cement and Concrete Composites, 2011, 33(3), 444. 46 Kerekes R J, Schell C J. Journal of Pulp and Paper Science, 1992, 18(1), 32. 47 Ramanathan T. Composites Science and Technology, 2005, 65(1), 1.