Please wait a minute...
材料导报  2024, Vol. 38 Issue (8): 22090309-7    https://doi.org/10.11896/cldb.22090309
  高分子与聚合物基复合材料 |
水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究
陈庆发1,2,3,*, 杨文雄1,2, 吴家有2, 牛文静2
1 广西大学工程防灾与结构安全教育部重点实验室,南宁 530004
2 广西大学资源环境与材料学院,南宁 530004
3 广西防灾减灾与工程安全重点实验室,南宁 530004
Macro and Micro Experimental Study of the Effect of Water-Cement Ratio on the Tensile Properties of Thin Spray Lining Materials
CHEN Qingfa1,2,3,*, YANG Wenxiong1,2, WU Jiayou2, NIU Wenjing2
1 Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
2 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
3 Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Nanning 530004, China
下载:  全 文 ( PDF ) ( 8376KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 薄喷衬层材料TSL865作为一种新型高分子喷涂支护材料,可快速有效地抑制地下工程围岩变形、破坏。抗拉性能是TSL865材料的优势特征,但其受水灰比的影响规律与作用机制目前尚不清晰。为此,本研究开展两方面的工作:(1)通过开展宏观拉伸试验,分析水灰比对TSL865试样应力-应变曲线特征、抗拉强度和抗拉韧性等力学性质的影响规律;(2)通过开展微观孔隙结构试验,分析水灰比对TSL865试样微观孔径分布、比表面积等几何性质的影响规律;计算不同水灰比下TSL865试样的孔径分形维数,从试样微观孔径结构分布特征角度,解译水灰比对TSL865试样抗拉性能的影响机制,并获取最佳水灰比。研究结果表明:TSL865试样的应力-应变曲线可以分为弹-塑-延-脆四个阶段,且柔性特征显著;TSL865试样抗拉性能较好的原因是其2~10 nm的无害孔占比较大;水灰比与试样的抗拉强度、孔径分形维数呈负相关关系,通过调节水灰比来改变TSL试样的微观孔隙结构,从而影响TSL试样的抗拉性能,其最优的水灰比为1∶2。研究成果有助于全面了解TSL865材料的抗拉性能与宏细观破断机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈庆发
杨文雄
吴家有
牛文静
关键词:  薄喷衬层材料  TSL  水灰比  抗拉性能  孔隙结构  地下工程    
Abstract: Thin spray-on liner material TSL865, as a new type of polymer spray support material, can quickly and effectively control the deformation and damage of underground engineering surrounding rock. Tensile performance is the advantageous feature of TSL865 material, but its law and mechanism of action influenced by water-cement ratio is still unclear. To this end, this study carried out two areas of work: (1) the influence law of water-cement ratio on mechanical properties such as tensile stress-strain curve characteristics, tensile strength and tensile toughness of TSL865 specimens was analyzed by conducting macro tensile tests; (2)the influence law of water-cement ratio on the geometric properties such as microscopic aperture distribution and specific surface area of TSL865 specimens was analyzed by conducting microscopic pore structure tests; the fractal dimension of aperture of TSL865 specimens with different water-cement ratios were calculated to decipher the influence mechanism of water-cement ratio on the tensile properties of TSL865 specimens from the perspective of microscopic aperture structure distribution characteristics of specimens and their optimal water-cement ratios were obtained. The results show that the tensile stress-strain curve of TSL865 specimen can be divided into four stages: elastic-plastic-delayed-brittle, and the flexibility characteristics are significant. The reason for the better tensile properties of TSL865 specimens is the larger proportion of harmless pores of 2—10 nm. The water-cement ratio is negatively correlated with the tensile strength and fractal dimension of the aperture of the specimen, and the water-cement ratio changes the microscopic pore structure of the TSL specimen, thus affecting its tensile properties, the optimal water to ash ratio is 1∶2. This work contributes to a comprehensive knowledge of the tensile properties and macroscopic breakage mechanism of TSL865 material.
Key words:  thin spray-on liner    TSL    water-cement ratio    tensile property    pore structure    underground engineering
出版日期:  2024-04-25      发布日期:  2024-04-28
ZTFLH:  TU52  
基金资助: 国家自然科学基金(51964003);广西大学学科交叉科研项目(2022JCB012)
通讯作者:  *陈庆发,广西大学资源环境与材料学院教授、博士研究生导师。2002年南方冶金学院采矿系采矿工程专业本科毕业,2005年武汉理工大学资源与环境工程学院采矿工程专业硕士毕业后到广西大学工作至今,2009年中南大学安全技术及工程专业博士毕业。目前主要从事土木工程材料等方面的研究工作。发表论文220余篇,包括International Journal of Rock Mechanics and Mining Sciences、Rock Mechanics and Rock Engineering、Computers and Geotechnics等。chenqf@gxu.edu.cn   
引用本文:    
陈庆发, 杨文雄, 吴家有, 牛文静. 水灰比对薄喷衬层材料抗拉性能影响的宏微观试验研究[J]. 材料导报, 2024, 38(8): 22090309-7.
CHEN Qingfa, YANG Wenxiong, WU Jiayou, NIU Wenjing. Macro and Micro Experimental Study of the Effect of Water-Cement Ratio on the Tensile Properties of Thin Spray Lining Materials. Materials Reports, 2024, 38(8): 22090309-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22090309  或          https://www.mater-rep.com/CN/Y2024/V38/I8/22090309
1 Galvin J M. Ground engineering-principles and practices for underground coal mining, Springer International Publishing, Germany, 2016, pp. 211.
2 Yılmaz H, Saydam S, Toper A Z. In: International Mining Congress and Exhibition of Turkey. Antalya, 2003, pp. 65.
3 Shi L. China Mining Magazine, 2011, 20(3), 93(in Chinese).
史玲. 中国矿业, 2011, 20(3), 93.
4 Shi L. Chinese Journal of Underground Space and Engineering, 2011, 7(4), 145(in Chinese).
史玲. 地下空间与工程学报, 2011, 7(4), 145.
5 Yilmaz H. Journal-South African Institute of Mining and Metallurgy, 2007, 107(8), 519.
6 Zhang S B, Wu J S, Wei Q, et al. Coal Science and Technology, 2017, 45(4), 1(in Chinese).
张少波, 吴建生, 魏群, 等. 煤炭科学技术, 2017, 45(4), 1.
7 Wang Y C, Dong S, Chen G T, et al. Metal Mine, 2011, 46(3), 144(in Chinese).
王毅成, 董山, 陈国涛, 等. 金属矿山, 2011, 46(3), 144.
8 Mpunzi P, Masethe R, Rizwan M, et al. Tunnelling and Underground Space Technology, 2015, 49(1), 369.
9 Dondapati G K, Deb D, Porter I, et al. Rock Mechanics and Rock Engineering, 2022, 55(7), 3997.
10 Zhang J, Zhuo Q S, Yang S, et al. Shock and Vibration, 2022, 2022, 7065650.
11 Liang H, Han J, Cao C, et al. Polymers, 2021, 13(13), 2205.
12 Zhao Y X, Fu X, Shi Y Y, et al. Sustainability, 2022, 14(10), 5909.
13 Chen L J, Zhou Z, Liu G M, et al. Advances in Mechanical Engineering, 2020, 12(2), 1.
14 Yilmaz H. Development of testing methods for comparative assessment of thin spray-on liner (TSL) shear and tensile properties. Ph. D. Thesis, University of the Witwatersrand, South Africa, 2011.
15 Spearing A, Ohler J, Attogbe E. In: Surface Support Liners: Membranes, Shotcrete and Mesh. Australian, 2001, pp. 11.
16 Espley S J, Gustas R, Heilig J, et al. In: International Seminar on Mine Surface Support Liners: Membrane, Shotcrete and Mesh. Austealia, 2001, pp. 1.
17 Lacerda L, Rispin M. In: 2nd International seminar on Surface Support Liners: Thin Sprayed Liners, Shotcrete, Mesh. South Africa, 2002, pp. 17.
18 Spearing A J S, Gelson J. In: 2nd International Seminar on Surface Support Liners: Thin Sprayed Liners, Shotcrete, Mesh. South Africa, 2002, pp. 1.
19 Ozturk H. Rock Mechanics and Rock Engineering, 2012, 45(6), 1095.
20 Yilmaz H. Journal of the Southern African Institute of Mining and Metallurgy, 2010, 110(10), 559.
21 Guner D, Golbasi O, Ozturk H. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(2), 377.
22 Tannant D D, Swan G, Espley S, et al. In: Canadian Institute of Mi-ning, Metallurgy and Petroleum 101st Annual General Meeting. Calgary, 1999, pp.8.
23 Plessis M D, Malan D F. International Journal of Rock Mechanics and Mining Sciences, 2021, 142(3), 104728.
24 Kanda M J, Stacey T R. Journal of the Southern African Institute of Mi-ning and Metallurgy, 2020, 120(4), 251.
25 Dong Q Z, Chen L J, Cheng W M, et al. Geofluids, 2020, 2020, 6647363.
26 Chen L J, Jiang X K, Liu Z X, et al. Advances in Materials Science and Engineering, 2020, 2020, 9789051.
27 Anonymous. Engineering and Mining Journal, 2009, 210(8), 91.
28 Plastics-determination of tensile properties: Part 2: Test conditions for moulding and extrusion plastics. CEN/TC 249, International Organization of Standardization. Switzerland, 2012, pp. 1.
29 He Y P, Yang S J. Advances in Fine Petrochemicals, 2018, 19(4), 52(in Chinese).
何云鹏, 杨水金. 精细石油化工进展, 2018, 19(4), 52.
30 Wei Q. Study on themechanism of spray-on membranes under bolting system. Ph. D. Thesis, China University of Mining and Technology, China, 2020(in Chinese).
魏群. 喷涂柔膜在锚杆支护中的作用机理研究. 博士学位论文, 中国矿业大学, 2020.
31 Wu Z W. Journal of the Chinese Ceramic Society, 1979, 7(3), 262(in Chinese).
吴中伟. 硅酸盐学报, 1979, 7(3), 262.
32 Xu L J, Zhang D J, Xian X F. Coal Conversion, 1995, 18(1), 31(in Chinese).
徐龙君, 张代钧, 鲜学福. 煤炭转化, 1995, 18(1), 31.
33 Li Y X, Chen Y M, He X Y, et al. Journal of the Chinese Ceramic Society, 2003, 31(8), 774(in Chinese).
李永鑫, 陈益民, 贺行洋, 等. 硅酸盐学报, 2003, 31(8), 774.
34 Wang X L, Hu R, Xie X Y, et al. Materials Reports, 2009, 23(6), 66(in Chinese).
王学龙, 胡锐, 薛祥义, 等. 材料导报, 2009, 23(6), 66.
35 Zhao D P, Guo Y H, Xie D L, et al. Journal of Northeast Petroleum University, 2014, 38(6), 100(in Chinese).
赵迪斐, 郭英海, 解徳录, 等. 东北石油大学学报, 2014, 38(6), 100.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[3] 李再久, 夏臣平, 刘明诏, 金青林. 骨组织工程镁基支架的制备研究进展[J]. 材料导报, 2024, 38(4): 22050324-11.
[4] 董必钦, 张枭, 刘源涛, 何晓伟, 王琰帅. 硫酸铝对高掺量流化床粉煤灰基泡沫混凝土性能的影响[J]. 材料导报, 2024, 38(20): 23090133-8.
[5] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[6] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[7] 张铖, 王玲, 姚燕, 史鑫宇. 碳化混凝土孔隙结构与Autoclam气体渗透性能的关联性研究[J]. 材料导报, 2023, 37(8): 21080026-5.
[8] 金浏, 贾立坤, 余文轩, 张仁波, 杜修力. 低温下混凝土劈裂拉伸破坏及尺寸效应试验研究[J]. 材料导报, 2023, 37(5): 21080041-7.
[9] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[10] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[11] 高玉磊, 徐康, 詹天翼, 江京辉, 蒋佳荔, 赵丽媛, 吕建雄. 热处理对木材吸湿吸水性的影响及其机理研究概述[J]. 材料导报, 2022, 36(15): 20100270-8.
[12] 侯磊, 韩学锋, 邢宝林, 曾会会, 王振帅, 郭晖, 张传祥, 谌伦建. 天然矿物为模板制备功能炭材料的研究进展[J]. 材料导报, 2022, 36(12): 20080165-11.
[13] 王英, 杨熙, 姜继斌, 李萍, 念腾飞. 动水冲刷作用下季冻区沥青混合料水损害发展的细观过程[J]. 材料导报, 2022, 36(10): 21040158-7.
[14] 李登华, 吕春祥, 杨禹, 王立娜, 崔东霞, 刘哲, 郭赢赢. 碳纤维微观结构表征:小角X射线散射[J]. 材料导报, 2021, 35(7): 7077-7086.
[15] 朱亚光, 戎丹萍, 徐培蓁, 陈飞, 孙文堂. 供氧剂浓度和浸泡位置对MICP再生骨料性能的影响[J]. 材料导报, 2021, 35(4): 4074-4078.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed