Research Progress of Magnetic Ga-based Liquid Metal Composites
LU Ben1, LI Anmin1,2,3,4,*, YANG Shujing1, YUAN Zihao1, HUI Jiaqi1
1 School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China 2 State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China 3 MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Guangxi University, Nanning 530004, China 4 Guangxi Higher Education Key Laboratory of High Performance Structural Materials and Heat Treatment & Surface Processing, Guangxi University, Nanning 530004, China
Abstract: Ga-based liquid metal has high electrical conductivity, high thermal conductivity, high fluidity, and excellent biocompatibility, and is a functional material with great development and application prospects. Ga-based liquid metal composites developed in combination with other different physical and chemical properties materials offer a new platform for basic and applied research, providing new ideas and showing great potential for solving challenging problems in various fields such as flexible electronics, thermal management, and biomedical science. The introduction of magnetic particles can provide Ga-based liquid metal with good magnetic properties. As an emerging magnetic functional material or magnetic intelligent material category, magnetic Ga-based liquid metal composites have shown preliminary research and application value in the fields of flexible electronics, micromotors, targeted drug delivery, thermal management, and shielding and absorption. In this paper, we systematically summarize and review the research and progress of magnetic Ga-based liquid metal composites. The effectiveness of this composite strategy is illustrated by reviewing the properties and applications of magnetic Ga-based liquid metal composites in four categories: basic research, magnetic control, magnetic thermal management, and shielding and absorption. This review provides an overview of ideas for the further research and deve-lopment of magnetic Ga-based liquid metal composites.
通讯作者:
*李安敏,广西大学资源环境与材料学院副教授、硕士研究生导师。1995年7月本科毕业于武汉科技大学金属材料及热处理专业,2010年6月在广西大学结构工程专业取得博士学位。主要从事高熵合金、铝合金的强韧化、复合材料的研究工作。近年来,在这些领域发表论文30余篇,包括Journal of Materials Engineering and Performance、Acta Metallurgica Sinica、Journal of Electronic Materials等。lianmin@gxu.edu.cn
陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
LU Ben, LI Anmin, YANG Shujing, YUAN Zihao, HUI Jiaqi. Research Progress of Magnetic Ga-based Liquid Metal Composites. Materials Reports, 2024, 38(8): 22090217-15.
1 Clarkson T W. Critical Reviews in Clinical Laboratory Sciences, 1997, 34, 369. 2 Schroeder W H, Munthe J. Atmospheric Environment, 1998, 32, 809. 3 Liu T Y, Sen P, Kim C J. Journal of Microelectromechanical Systems, 2012, 21, 443. 4 Zeng M Q, Li L Y, Zhu X H, et al. Accounts of Materials Research, 2021, 2, 669. 5 Dickey M D. Advanced Materials, 2017, 29, 1606425. 6 Wang X H, Lu C N, Rao W. Applied Thermal Engineering, 2021, 192, 116937. 7 Yan J J, Lu Y, Chen G J, et al. Chemical Society Reviews, 2018, 47, 2518. 8 Liang S T, Wang H Z, Liu J. Chemistry, 2018, 24, 17616. 9 Hirsch A, Dejace L, Michaud H O, et al. Accounts of Chemical Research, 2019, 52, 534. 10 Guo X L, Ding Y, Yu G H, et al. Advanced Materials, 2021, 33, 2170226. 11 Ge H S, Li H Y, Mei S F, et al. Renewable and Sustainable Energy Reviews, 2013, 21, 331. 12 Chiew C, Morris M J, Malakooti M H. Materials Advances, 2021, 2, 7799. 13 Linderoth S, Rasmussen L H, MØrup S. Journal of Applied Physics, 1991, 69, 5124. 14 Martin A, Odier P, Pinton J F, et al. The European Physical Journal B, 2000, 18, 337. 15 de Vicente J, Klingenberg D, Hidalgo-Alvarez R. Soft Matter, 2010, 7, 3701. 16 Bica I, Liu Y D, Choi H J. Journal of Industrial and Engineering Che-mistry, 2013, 19, 394. 17 Chen S, Liu J. ES Energy & Environment, 2019, 5, 8. 18 Lin Y L, Genzer J, Dickey M D. Advanced Science, 2020, 7, 2000192. 19 Haynes W M, Lide D R, Bruno T J. CRC handbook of chemistry and physics(97th Edition), CRC Press, USA, 2017, pp. 666. 20 Gong X G, Chiarotti G L, Parrinello M, et al. Physical Review B, 1991, 43, 14277. 21 Gong X G, Chiarotti G L, Parrinello M, et al. Europhysics Letters, 1993, 21, 469. 22 Malakooti M H, Kazem N, Yan J J, et al. Advanced Functional Mate-rials, 2019, 29, 1906098. 23 Ding Y, Guo X, Qian Y, et al. Advanced Materials, 2020, 32, 2002577. 24 Sun X Y, Yuan B, Sheng L, et al. Applied Materials Today, 2020, 20, 100722. 25 Wang Q, Yu Y, Pan K Q, et al. IEEE Transactions on Biomedical Engineering, 2014, 61, 2161. 26 Kulkarni S, Pandey A, Mutalik S. Nanomedicine: Nanotechnology, Bio-logy and Medicine, 2020, 26, 102175. 27 Sivan V, Tang S Y, O’Mullane A P, et al. Advanced Functional Mate-rials, 2013, 23, 144. 28 Chen Y Z, Liu Z, Zhu D Y, et al. Materials Horizons, 2017, 4, 591. 29 Tang J B, Zhao X, Li J, et al. ACS Applied Materials & Interfaces, 2017, 9, 35977. 30 Li T, Lv Y G, Liu J, et al. Forsch Ingenieurwes, 2005, 70, 243. 31 Miner A, Ghoshal U. Applied Physics Letters, 2004, 85, 506. 32 Liu H, Liu H Q, Lin Z Y, et al. Rare Metal Materials and Engineering, 2018, 47, 2668. 33 Chiechi R C, Weiss E A, Dickey M D, et al. Angewandte Chemie, 2007, 120, 148. 34 Dickey M D, Chiechi R C, Larsen R J, et al. Advanced Functional Materials, 2008, 18, 1097. 35 Khan M R, Eaker C B, Bowden E F, et al. The Proceedings of the National Academy of Sciences, 2014, 111, 14047. 36 Eaker C B, Dickey M D. Applied Physics Reviews, 2016, 3, 031103. 37 Chen S, Wang H Z, Zhao R Q, et al. Matter, 2020, 2, 1446. 38 Sun X M, Li Y D. Angewandte Chemie International Edition, 2004, 43, 597. 39 Carle F, Bai K L, Casara J, et al. Physical Review Fluids, 2017, 2, 013301. 40 Jeon J, Lee J B, Chung S K, et al. In: 2015th-2018th International Conference on Solid-State Sensors, Actuators and Microsystems. Anchorage, AK, USA, 2015, pp. 1834. 41 Jeon J, Lee J B, Chung S K, et al. Journal of Microelectromechanical Systems, 2016, 25, 1050. 42 Kim D, Lee J B. Journal of the Korean Physical Society, 2015, 66, 282. 43 Jeon J, Lee J B, Chung S K, et al. Lab on a Chip, 2017, 17, 128. 44 Chen R, Xiong Q, Song R Z, et al. Advanced Materials Interfaces, 2019, 6, 1901057. 45 Seo J, Lee J B, Chung S K, et al. In: The 31st IEEE International Conference on Micro Electro Mechanical Systems. Belfast, UK, 2018, pp.145. 46 Jeong J, Seo J, Chung S K, et al. In: The 32nd IEEE International Conference on Micro Electro Mechanical Systems. Seoul, Korea, 2019, pp. 409. 47 Jeong J, Seo J, Chung S K, et al. Journal of Microelectromechanical Systems, 2020, 29, 1208. 48 Jeong J, Lee J B, Chung S K, et al. Lab on a Chip, 2019, 19, 3261. 49 Jeong J, Seo J, Lee J B, et al. Materials Research Express, 2020, 7, 015708. 50 Cao L F, Park H S, Dodbiba G, et al. Magnetohydrodynamics, 2008, 44, 97. 51 Xiong M F, Gao Y X, Liu J. Journal of Magnetism and Magnetic Mate-rials, 2014, 354, 279. 52 Dodbiba G, Ono K, Park H S, et al. International Journal of Modern Physics B, 2011, 25, 947. 53 Fujita T, Park H S, Ono K, et al. Journal of Magnetism and Magnetic Materials, 2011, 323, 1207. 54 Park H S, Cao L F, Dodbiba G, et al. Journal of Physics: Conference Series, 2009, 149, 012108. 55 Yu M C, Bian X F, Wang T Q, et al. Soft Matter, 2017, 13, 6340. 56 Guo R, Sun X Y, Yuan B, et al. Advanced Science, 2019, 6, 1901478. 57 Yang C C, Bian X F, Qin J Y, et al. RSC Advances, 2014, 4, 59541. 58 Guo R, Wang X L, Chang H, et al. Advanced Engineering Materials, 2018, 20, 1800054. 59 He X K, Ni M Y, Wu J P, et al. Journal of Materials Science & Techno-logy, 2021, 92, 60. 60 Ren L, Sun S S, Casillas-Garcia G, et al. Advanced Materials, 2018, 30, 1802595. 61 Zhang Y X, Jiang S J, Hu Y L, et al. Nano Letters, 2022, 22, 2923. 62 Wang L, Rutkowski S, Si T Y, et al. Colloid and Interface Science Communications, 2022, 47, 100600. 63 Hong K, Choe M, Kim S, et al. Polymers, 2021, 13, 2407. 64 Hu L, Wang H Z, Wang X F, et al. ACS Applied Materials & Interfaces, 2019, 11, 8685. 65 Li F X, Kuang S L, Li X P, et al. Advanced Materials Technologies, 2019, 4, 1800694. 66 Ito R, Dodbiba G, Fujita T. International Journal of Modern Physics B, 2005, 19, 1430. 67 Yang C C, Liu Z, Yu M C, et al. Journal of Materials Science, 2020, 55, 13303. 68 Xu J Q, Pang H M, Gong X L, et al. iScience, 2021, 24, 102549. 69 Liu H, Li M X, Li Y H, et al. Soft Matter, 2018, 14, 3236. 70 Zhang C J, Yang Q, Yong J L, et al. International Journal of Extreme Manufacturing, 2021, 3, 025102. 71 Ma B, Xu C T, Chi J J, et al. Advanced Functional Materials, 2019, 29, 1901370. 72 Ma B, Xu C T, Cui L S, et al. ACS Applied Materials & Interfaces, 2021, 13, 5574. 73 Yun G L, Tang S Y, Sun S S, et al. Nature Communications, 2019, 10, 1300. 74 Liu M, Wang Y X, Kuai Y B, et al. Small, 2019, 15, 1905446. 75 Cao L X, Yu D H, Xia Z S, et al. Advanced Materials, 2020, 32, 2070136. 76 Wang B, Zhang B F, Tan Y Z, et al. Advanced Intelligent Systems, 2022, 4, 2200080. 77 Elbourne A, Cheeseman S, Atkin P, et al. ACS Nano, 2020, 14, 802. 78 Li F X, Kuang S L, Yang H, et al. In: Proceedings of the 2018 IEEE International Conference on Real-time Computing and Robotics. Kandima, Maldives, 2018, pp. 185. 79 Lu Y Y, Che Z X, Sun F Y, et al. ACS Applied Materials & Interfaces, 2021, 13, 5256. 80 Merhebi S, Mayyas M, Abbasi R, et al. ACS Applied Materials & Interfaces, 2020, 12, 20119. 81 Zhang J, Guo R, Liu J. Journal of Materials Chemistry B, 2016, 4, 5349. 82 Zhao R, Zhou G P, Yao H C, et al. arXiv, DOI:10.48550/arXiv.2111.14170 83 de Castro I A, Chrimes A F, Zavabeti A, et al. Nano Letters, 2017, 17, 7831. 84 Furriel F. Magnetocaloric ferrofluids. Master’s Thesis, Porto University, PT, 2021. 85 Lu Y Y, Zhou H, Mao H N, et al. ACS Applied Materials & Interfaces, 2020, 12, 48748. 86 Zhang M K, Zhang P J, Wang Q, et al. Journal of Materials Chemistry C, 2019, 7, 10331. 87 Zhu R Q, Li Z Y, Deng G, et al. Nano Energy, 2022, 92, 106700. 88 Lei Z K, Tan G G, Man Q K, et al. Materials Research Bulletin, 2021, 137, 111199. 89 Wang H Z, Yao Y Y, Wang X J, et al. ACS Omega, 2019, 4, 2311. 90 Zhou L Y, Ye J H, Fu J Z, et al. ACS Applied Materials & Interfaces, 2020, 12, 12068. 91 Zhu L F, Chen Y Z, Shang W H, et al. Journal of Materials Chemistry C, 2019, 7, 10166. 92 Deng F H, Nguyen Q K, Zhang P. Additive Manufacturing, 2020, 33, 101117. 93 Smith A, Bahl C R, Bjørk R, et al. Advanced Energy Materials, 2012, 2, 1288. 94 Romero Gómez J, Ferreiro Garcia R, De Miguel Catoira A, et al. Rene-wable and Sustainable Energy Reviews, 2013, 17, 74. 95 Dan’kov S Y, Tishin A M, Pecharsky V K, et al. Physical Review B, 1998, 57, 3478. 96 Franco V, Blázquez J S, Ipus J J, et al. Progress in Materials Science, 2018, 93, 112. 97 Iqbal A, Sambyal P, Koo C M. Advanced Functional Materials, 2020, 30, 2000833. 98 Yin F Q, Zhao Y C, Li Z C, et al. Journal of Functional Materials, 2022, 53(2), 2043(in Chinese). 尹富强, 赵玉辰, 李赵春, 等. 功能材料, 2022, 53(2), 2043. 99 Du B W, He S, Lian X K, et al. Journal of Functional Materials, 2023, 54(6), 6001(in Chinese). 杜炳文, 何帅, 廉晓克, 等. 功能材料, 2023, 54(6), 6001.