Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 20120133-13    https://doi.org/10.11896/cldb.20120133
  无机非金属及其复合材料 |
纤维取向分布对水泥基复合材料力学性能的影响及其评价方法的研究进展
王晨宇1,2,3, 韦经杰1,4, 龙武剑1,2,3,*, 董必钦1,2,3
1 深圳大学土木与交通工程学院,广东 深圳 518060
2 广东省滨海土木工程耐久性重点实验室,广东 深圳 518060
3 滨海城市韧性基础设施教育部重点实验室,广东 深圳 518060
4 密苏里科技大学土木建筑与环境工程系,密苏里州 65401
Review on the Effect of Fiber Orientation Distribution on Mechanical Performance of Cement-based Composites and Its Evaluated Methods
WANG Chenyu1,2,3, WEI Jingjie1,4, LONG Wujian1,2,3,*, DONG Biqin1,2,3
1 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
2 Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen 518060, Guangdong, China
3 Key Lab of Costal Urban Resilient Infrastructure, Shenzhen 518060, Guangdong, China
4 Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Missouri 65401, USA
下载:  全 文 ( PDF ) ( 8309KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维增强水泥基复合材料是以水泥净浆、砂浆或混凝土为基材,外掺钢纤维、聚乙烯醇纤维或碳纤维等纤维,从而提升基材力学性能和耐久性能的一种新型水泥基复合材料。基于纤维增强基体理论,当纤维均匀分布且取向平行于基体受力方向时,其在微观层面能有效抑制因水泥基复合材料内部拉应力低而产生的微裂缝,同时传递裂缝间的应力以防止其进一步发展;在宏观层面,纤维可显著提高水泥基复合材料的抗拉抗弯强度及延性。然而,纤维的类型、长径比和掺量以及施工工艺等因素均会影响纤维在基体中取向分布,严重削弱其在微裂缝间的桥接作用,增加其掺量。这不仅对水泥基复合材料的抗拉抗弯强度、韧性增强效果等工作性能造成不利影响,而且提高其生产成本,极大限制其应用。
基于国内外学者对纤维取向分布与水泥基复合材料的力学性能之间的关系的大量探究,本文系统阐述了纤维取向和空间分布对水泥基复合材料力学性能的影响,总结了影响纤维取向分布的主要因素,同时介绍了评价纤维在基体中取向分布情况的各类检测手段,并分析了不同检测手段的优劣性,最后论述了当前纤维取向分布预测模型的发展现状。本文可为调控纤维在水泥基复合材料取向分布、提升结构的抗拉抗弯强度及韧性、降低纤维增强水泥基复合材料的生产成本的相关研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晨宇
韦经杰
龙武剑
董必钦
关键词:  纤维增强  取向分布  力学性能  桥接作用  表征方法    
Abstract: Fiber-reinforced cement-based composites, employing the cement paste, mortar or concrete as the base material and adulterated by various types of fibers, such as steel fiber, polyvinyl alcohol fiber, carbon fiber etc., to improve mechanical properties and durability of the base material, is a new type of cement-based composites. Based on the fiber-reinforced matrix theory, when fibers are uniformly distributed and their orientation is parallel to the direction of the matrix, they can effectively restrain the micro-fracture caused by the low tensile stress in cement-based composites and transfer the stress between the micro-fracture to prevent its further development at a micro level, while they can significantly improve the tensile and bending strength as well as ductility of cement-based composites at a macro level. However, the factors, such as types, the aspect ratio and dosages of fibers as well as the construction technology, affect the fiber orientation distribution in the matrix, severely weakening the fiber bridging action between the micro-fracture and increasing the fiber content, which not only adversely influences the tensile and bending strength as well as ductility-enhancing effect of cement-based composites, but also increases their production cost and greatly restricts their application.
Based on a large amount of recent research on the relationship between fiber orientation distribution and mechanical properties of cement-based composites by domestic and foreign scholars, this paper systematically summarizes the influence of orientation and spatial distribution for fibers on mechanical properties of cement-based composites, and summarizes the main factors affecting fiber orientation distribution. At the same time, various detection methods for evaluating fiber orientation distribution in matrix are introduced, and the advantages and disadvantages of different detection methods are analyzed. Finally, the development status of prediction models for fiber orientation distribution is discussed. This paper can provide reference for controlling the orientation distribution of fiber in cement-based composites, improving the tensile and bending strength as well as ductility of structures and reducing the production cost of fiber-reinforced cement-based composites.
Key words:  fiber-reinforced    orientation distribution    mechanical property    bridging effect    evaluation model
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TU528  
基金资助: 深圳市科技计划项目(JCYJ20180305124844894; JCYJ20190808151011502);国家自然科学基金-山东联合基金(U2006223);广东省科技创新战略专项资金(“攀登计划”专项资金) (pdjh2020a0495)
通讯作者:  *longwj@szu.edu.cn   
作者简介:  王晨宇,2019年毕业于西南交通大学土木工程学院,获工学学士学位。现为深圳大学土木与交通工程学院硕士研究生。在龙武剑教授的指导下,主要从事纤维增强水泥基复合材料领域的研究。
龙武剑,博士,深圳市鹏城学者特聘教授,深圳大学土木与交通工程学院教授、博士研究生导师。主要研究领域为建筑智能化及低碳技术、固体废弃物资源化再利用等。主持含国家自然科学基金重点项目在内的10余项国家、省部和市级纵向科研项目。近五年以第一作者&通讯作者在Cement and Concrete Composites、ACI Materials Journal、Composite Part B、Construction and Building Materials等国际知名期刊发表学术论文70余篇;出版专著2部;授权国家专利21项,美国专利1项,软件著作权3项。
引用本文:    
王晨宇, 韦经杰, 龙武剑, 董必钦. 纤维取向分布对水泥基复合材料力学性能的影响及其评价方法的研究进展[J]. 材料导报, 2022, 36(15): 20120133-13.
WANG Chenyu, WEI Jingjie, LONG Wujian, DONG Biqin. Review on the Effect of Fiber Orientation Distribution on Mechanical Performance of Cement-based Composites and Its Evaluated Methods. Materials Reports, 2022, 36(15): 20120133-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20120133  或          http://www.mater-rep.com/CN/Y2022/V36/I15/20120133
1 Shaikh F U A, Luhar S, Arel H Ş, et al. Construction and Building Materials, 2020, 232, 117152.
2 Long W J, Khayat K H, Yahia A, et al. Cement & Concrete Composites, 2017, 82, 105.
3 Long W J, Gu Y, Liao J, et al. Journal of Cleaner Production, 2017, 167, 317.
4 Maya Duque L F, Graybeal B. Materials and Structures, 2016, 50 (1), 55.
5 Lusis V, Krasnikovs A, Kononova O, et al. Journal of Civil Engineering and Management, 2017, 23 (8), 1091.
6 Alberti M G, Enfedaque A, Gálvez J C. Construction and Building Materials, 2014, 55, 274.
7 Li H D, Zhang Q M, Feng G, et al. Construction and Building Mate-rials, 2020, 260, 119901.
8 Long W J, Wei J J, Xing F, et al. Cement & Concrete Composites, 2018, 93, 127.
9 Villar V P, Medina N F, Alonso M M, et al. Construction and Building Materials, 2019, 207, 548.
10 Song Q, Yu R, Shui Z, et al. Construction and Building Materials, 2018, 169, 8.
11 Zhang Qianqian, Liu Jianzhong, Zhou Huaxin, et al. Materials Reports A:Review Papers, 2017, 31(12), 73 (in Chinese).
张倩倩, 刘建忠, 周华新, 等. 材料导报:综述篇, 2017, 31(12), 73.
12 Jasiūniené E, Cicénas V, Grigaliūnas P, et al. Materials and Structures, 2018, 51 (4), 103.
13 Wansom S, Janjaturaphan S. Cement and Concrete Research, 2013, 45, 37.
14 Lataste J F, Behloul M, Breysse D. Ndt & E International, 2008, 41 (8), 638.
15 Huang H, Gao X, Zhang A. Construction and Building Materials, 2019, 199, 624.
16 Herrmann H, Boris R, Goidyk O, et al. IOP Conference Series: Materials Science and Engineering, 2019, 660, 012059.
17 Kolařík F, Patzák B, Thrane L N. Computers & Structures, 2015, 154, 91.
18 Herrmann H, Eik M, Berg V, et al. Meccanica, 2014, 49 (8), 1985.
19 Gudžulić V, Dang T S, Meschke G. Computational Mechanics, 2018, 63 (6), 1111.
20 Bi J, Zhao Y, Guan J, et al. Structural Concrete, 2019, 20 (5), 1722.
21 Romualdi J P, Batson G B. Project American Society of Civil Engineers, 1963, 89 (6), 147.
22 Zhang Y, Zhu Y, Qu S, et al. Construction and Building Materials, 2020, 251, 118893.
23 Abrishambaf A, Cunha V M C F, Barros J A O. Fratturaed Integrità Strutturale, 2014, 9 (31), 38.
24 Zhou B, Uchida Y. Cement and Concrete Composites, 2017, 83, 66.
25 Ding C, Guo L, Chen B. Construction and Building Materials, 2020, 247, 118491.
26 Doyon-Barbant J, Charron J P. Materials and Structures, 2018, 51 (6), 157.
27 Raju R A, Lim S, Akiyama M, et al. Construction and Building Mate-rials, 2020, 262, 119963.
28 Zhou B, Uchida Y. Cement and Concrete Research, 2017, 95, 164.
29 Astm C C, Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading), ASTM, USA, 2010, pp. 24.
30 Yoo D Y, Banthia N, Kang S T, et al. Engineering Fracture Mechanics, 2016, 157, 86.
31 Yoo D Y, Banthia N, Kang S T, et al. Composite Structures, 2016, 157, 62.
32 Mu Ru, Wang Cheng, Li Hui, et al. Journal of Building Materials, 2016, 19(1), 78 (in Chinese).
慕儒, 王成, 李辉, 等. 建筑材料学报, 2016, 19(1), 78.
33 Niu Hengmao, Wu Wenhong, Xing Yongming, et al. Journal of Building Materials, 2016, 19(2), 352 (in Chinese).
牛恒茂, 武文红, 邢永明, 等. 建筑材料学报, 2016, 19(2), 352.
34 Wu Wenhong, Niu Hengmao, Zhao Yanru, et al. Materials Reports B:Research Papers, 2017, 31(3), 140 (in Chinese).
武文红, 牛恒茂, 赵燕茹, 等. 材料导报:研究篇, 2017, 31(3), 140.
35 Yoo D Y, Kang S T, Lee J H, et al. Cement and Concrete Research, 2013, 54, 180.
36 Teng L, Meng W, Khayat K H. Cement and Concrete Research, 2020, 138, 106222.
37 Meng W, Khayat K H. Composites Part B-Engineering, 2017, 117, 26.
38 Hambach M, Möller H, Neumann T, et al. Cement and Concrete Research, 2016, 89, 80.
39 Alberti M G, Enfedaque A, Gálvez J C, et al. Construction and Building Materials, 2020, 235, 117289.
40 Ozturk M, Sevim U K, Akgol O, et al. Measurement, 2019, 138, 356.
41 Si Wen, Cao Mingli, Feng Jiaqi. Materials Reports A:Review Papers, 2019, 33(3), 819 (in Chinese).
司雯, 曹明莉, 冯嘉琪. 材料导报:综述篇, 2019, 33(3), 819.
42 Lin Jianjun. Research on directional control and reinforcement effect of steel fiber in cement-based materials. Master’s Thesis, Hebei University of Technology, China, 2015 (in Chinese).
林建军. 水泥基材料中钢纤维的方向控制及增强效应研究. 硕士学位论文, 河北工业大学, 2015.
43 Maryamh K, Hauch K, Redenbach C, et al. Structural Concrete, 2021, 22, 361.
44 Hung C C, Chen Y T, Yen C H. Construction and Building Materials, 2020, 260, 119944.
45 Huang H, Gao X, Li L, et al. Construction and Building Materials, 2018, 188, 709.
46 Bosman T, Kearsley E P. Materials and Structures, 2019, 52 (3), 51.
47 Lin Zewen, Chen Hao, Shui Zhonghe, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(7), 2010 (in Chinese).
林泽文, 陈浩, 水中和, 等. 硅酸盐通报, 2019, 38(7), 2010.
48 Alberti M G, Enfedaque A, Gálvez J C, et al. Construction and Building Materials, 2016, 122, 505.
49 Song Q, Yu R, Shui Z, et al. Construction and Building Materials, 2018, 188, 17.
50 Huang H, Su A, Gao X, et al. Construction and Building Materials, 2019, 215, 310.
51 Wang Yang, Xu Jinxia, Jiang Linhua, et al. Acta Materiae Compositae Sinica, 2019, 36(11), 2726 (in Chinese).
汪洋, 徐金霞, 蒋林华, 等. 复合材料学报, 2019, 36(11), 2726.
52 Mu Ru, Qiu Xin, Zhao Quanming, et al. Journal of Building Materials, 2015, 18(2), 208 (in Chinese).
慕儒, 邱欣, 赵全明, 等. 建筑材料学报, 2015, 18(2), 208.
53 Huang Zhenyu, Huang Xinwei, Li Weiwen, et al. C.N. patent, CN208197093U, 2018.
54 Ferrández D, Saiz P, Morón C, et al. Construction and Building Mate-rials, 2019, 222, 243.
55 Ravindran A R, Ladani R B, Wu S, et al. Composites Part A: Applied Science and Manufacturing, 2018, 106, 11.
56 Zhao M, Li J, Law D. Magazine of Concrete Research, 2017, 69 (20), 1043.
57 Staehli P, Custer R, van Mier J G M. Materials and Structures, 2008, 41 (1), 189.
58 Tosun-Felekoğlu K, Felekoğlu B, Ranade R, et al. Composites Part B: Engineering, 2014, 56, 536.
59 Ozyurt N, Mason T O, Shah S P. Cement and Concrete Composites, 2007, 29 (2), 70.
60 Wang R, Gao X, Huang H, et al. Construction and Building Materials, 2017, 144, 65.
61 Boulekbache B, Hamrat M, Chemrouk M, et al. Construction and Buil-ding Materials, 2010, 24 (9), 1664.
62 Wu Z, Khayat K H, Shi C. Cement and Concrete Research, 2019, 123, 105786.
63 Song Heyue, Ding Yining. Journal of Material Scicence and Engineering, 2015, 33(5), 768 (in Chinese).
宋贺月, 丁一宁. 材料科学与工程学报, 2015, 33(5), 768.
64 Cao M, Mao Y, Khan M, et al. Construction and Building Materials, 2018, 184, 128.
65 Michels J, Waldmann D, Maas S, et al. Construction and Building Materials, 2012, 26 (1), 145.
66 Alberti M G, Enfedaque A, Galvez J C, et al. Construction and Building Materials, 2016, 122, 505.
67 Alberti M G, Enfedaque A, Galvez J C. Engineering Fracture Mechanics, 2016, 154, 225.
68 Zhou J, Qian S, Ye G, et al. Cement & Concrete Composites, 2012, 34 (3), 342.
69 Liu Jianzhong, Zhang Lihui, Li Changfeng, et al. Journal of the Chinese Ceramic Society, 2015, 43(8), 1061 (in Chinese).
刘建忠, 张丽辉, 李长风, 等. 硅酸盐学报, 2015, 43(8), 1061.
70 Felekoğlu B, Tosun-Felekoğlu K, Godek E. Construction and Building Materials, 2015, 86, 85.
20120133-1271 Lee B Y, Kim T, Kim Y Y. Journal of Advanced Concrete Technology, 2010, 8 (3), 337.
72 Ruan T, Poursaee A. Journal of Materials in Civil Engineering, 2019, 31 (8), 04019133.
73 Ponikiewski T, Katzer J, Bugdol M, et al. Materials and Structures, 2014, 48 (12), 3863.
74 Zheng D, Song W, Fu J, et al. Construction and Building Materials, 2020, 258, 120351.
75 Yang Y X. Cement and Concrete Research, 2002, 32 (5), 747.
76 Al-Mattarneh H. Construction and Building Materials, 2014, 73, 350.
77 Roqueta G, Jofre L, Romeu J, et al. IEEE Transactions on Instrumentation and Measurement, 2011, 60 (12), 3913.
78 Soroushian P, Lee C D. Materials Journal, 1990, 87 (5), 433.
79 Dupont D, Vandewalle L. Cement & Concrete Composites, 2005, 27 (3), 391.
80 Alberti M G, Enfedaque A, Gálvez J C. Composites Part B: Engineering, 2018, 151, 274.
81 Zhou Jinghai, Li Ze, Kang Tianbei. Concrete, 2016, 322(8), 99 (in Chinese).
周静海, 李泽, 康天蓓. 混凝土, 2016, 322(8), 99.
82 Deeb R, Karihaloo B L, Kulasegaram S. Cement and Concrete Research, 2014, 56, 112.
83 Bi J H, Bao C, Xu D, et al. Magazine of Concrete Research, 2017, 69 (16), 811.
84 Folgar F, Tucker III C L. Journal of Reinforced Plastics and Composites, 1984, 3 (2), 98.
85 Montgomery-Smith S, Jack D A, Smith D E. Composites Part A Applied Science & Manufacturing, 2010, 41 (7), 827.
86 Montgomery-Smith S, Jack D, Smith D E. Journal of Non-Newtonian Fluid Mechanics, 2011, 166 (7-8), 343.
87 Joaquim S, Charles L. Journal of Rheology, 2016, 39 (6), 1095.
88 Chung D H, Kwon T H. Polymer Composites, 2010, 22 (5), 636.
89 Šveč O, Skocek J, Stang H, et al. Journal of Non-Newtonian Fluid Mechanics, 2012, 179, 32.
90 Deeb R, Kulasegaram S, Karihaloo B L. Computational Particle Mecha-nics, 2014,1 (4), 373.
91 Deeb R, Kulasegaram S, Karihaloo B L. Computational Particle Mec-hanics, 2014, 1 (4), 391.
92 Skoptsov K A, Sheshenin S V, Galatenko V V, et al. International Journal of Applied Mechanics, 2016, 8 (2), 1650016.
93 Alberti M G, Enfedaque A, Gálvez J C. Cement and Concrete Composites, 2017, 77, 29.
94 Yamane Y, Kaneda Y, Dio M. Journal of Non-Newtonian Fluid Mecha-nics, 1994, 54, 405.
95 Laranjeira F, Aguado A, Molins C, et al. Cement and Concrete Research, 2012, 42 (6), 752.
[1] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[2] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[3] 李丹, 王启伟, 韩国峰, 张保国, 朱胜, 李卫. 横向交变磁场对铝合金电弧增材成形组织与性能的影响[J]. 材料导报, 2023, 37(4): 21050158-6.
[4] 郝思洁, 褚强, 李文亚, 杨夏炜, 邹阳帆. 电脉冲处理对金属材料组织、力学性能影响的研究进展[J]. 材料导报, 2023, 37(4): 21030039-9.
[5] 王彦明, 高晓红, 李萍, 王廷梅, 王齐华. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 21040187-7.
[6] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[7] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[8] 吴远东, 郑维爽, 李源遽, 都贝宁, 张兴儒, 李家龙, 于盛洋, 肖忆楠, 赖琛, 盛立远, 黄艺. 聚羟基脂肪酸酯(PHAs)基止血材料研究进展[J]. 材料导报, 2023, 37(3): 21010218-9.
[9] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[10] 邱玺, 高士鑫, 李权, 李垣明, 李文杰, 辛勇. 热管反应堆用钼铼合金的研究进展[J]. 材料导报, 2023, 37(2): 21020011-9.
[11] 杨东辉, 唐帅, 吴子彬, 秦克, 张海涛, 崔建忠, Hiromi Nagaumi. 高锌铝合金合金化和加工工艺的研究现状及发展趋势[J]. 材料导报, 2023, 37(2): 21010126-6.
[12] 杨正宏, 刘思佳, 吴凯, 于龙, 潘峰. 纤维增强磷酸镁水泥基复合材料研究进展[J]. 材料导报, 2023, 37(1): 20110150-7.
[13] 相泽辉, 王俊, 牛建刚, 周杰. FRP约束混凝土关键问题综述[J]. 材料导报, 2023, 37(1): 20110045-8.
[14] 黄智恒, 薛松柏, 王博, 张帆, 龙伟民. Sm对SAl 4043铝合金焊丝的组织、性能及氢含量的影响[J]. 材料导报, 2023, 37(1): 21080231-6.
[15] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed