Please wait a minute...
材料导报  2022, Vol. 36 Issue (22): 22040298-12    https://doi.org/10.11896/cldb.22040298
  宇航材料 |
空间高吸收率消杂光涂层材料的研究与应用进展
平托1,2, 张益帆1, 宣吴静1, 张育新1,*
1 重庆大学材料科学与工程学院,重庆 400044
2 北京卫星制造厂有限公司,北京 100094
Progress and Application of Spatial Stray Light Elimination Coating Materials with High Absorption Rate
PING Tuo1,2, ZHANG Yifan1, XUAN Wujing1, ZHANG Yuxin1,*
1 School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 Beijing Spacecrafts,Beijing 100094, China
下载:  全 文 ( PDF ) ( 8177KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 空间消杂光涂层能够在空间环境下高效吸收并削弱光学探测器光路内非成像敏感光线,从而起到消杂散光的作用。因此,空间消杂光涂层对空间光学遥感器的设计具有重要作用。本文对国内外已形成产品应用的典型空间消杂散光涂层材料及其常用制备方法进行了综述,并指出消杂光材料未来的空间应用发展方向,为更加深入研究空间高吸收率消杂光涂层材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
平托
张益帆
宣吴静
张育新
关键词:  高吸收率  消杂光  空间  制备方法  应用    
Abstract: Spatial stray light elimination coating can effectively suppress stray lights by absorbing and weaking non-imaging sensitive light in the optical detector optical path in space.Hence, spatial stray lights elimination coating materials with high application rate are important for the design of space optical remote sensors.In this paper, the types and preparation technologies of typical spatial stray light elimination coating materials that have formed product applications at home and abroad were reviewed to point out the future development direction of spatial applications of stray light elimination materials and provide reference for more in-depth research on spatial stray light elimination coating materials with high absorption rate.
Key words:  high absorption    stray light elimination    space    preparation method    application
出版日期:  2022-11-25      发布日期:  2022-11-25
ZTFLH:  TB34  
基金资助: 国家自然科学基金委广东联合基金重点项目(U1801254)
通讯作者:  * zhangyuxin@cqu.edu.cn   
作者简介:  平托,2016年6月毕业于北京化工大学,获得工学硕士学位。现为重庆大学材料科学与工程学院博士研究生,在张育新教授的指导下进行研究。目前主要研究方向为宇航涂层材料及相关表面工程技术。
张育新,重庆大学教授,2000年本科毕业于天津大学,2008年博士毕业于新加坡国立大学,师从曾华淳教授(全球Top100化学家)。主要的研究兴趣包括多维度和多组分的可控自组装纳米技术、超级电容器电极材料的合成与形貌控制、涂层材料的可控制备,尤其是硅藻土基复合材料的制备与应用,获2020和2021年度科睿唯安“全球高被引科学家”称号。已发表高水平论文300余篇,他引16 000余次,H因子70。
引用本文:    
平托, 张益帆, 宣吴静, 张育新. 空间高吸收率消杂光涂层材料的研究与应用进展[J]. 材料导报, 2022, 36(22): 22040298-12.
PING Tuo, ZHANG Yifan, XUAN Wujing, ZHANG Yuxin. Progress and Application of Spatial Stray Light Elimination Coating Materials with High Absorption Rate. Materials Reports, 2022, 36(22): 22040298-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040298  或          http://www.mater-rep.com/CN/Y2022/V36/I22/22040298
1 Waddell P, Black D S.In: Advances in Optical and Mechanical Techno-logies for Telescopes and Instrumentation Ⅱ.Edinburgh, United Kingdom, 2016, pp.99122T1-18.
2 Johnson T.In: OPTI 521-Optomechanical Engineering. Tucson Arizona, USA,2012, pp.11.
3 Zhou H J, Liu W Q, Si F Q, et al. Optics and Precision Engineering, 2012, 20(11), 2331(in Chinese).
周海金, 刘文清, 司福祺, 等.光学精密工程, 2012, 20(11), 2331.
4 Platt U, Stutz J. In: Differential optical absorption spectroscopy, Springer, Germany, 2008, pp.598.
5 国防科学技术工业委员会.GJB 2502.2-2006航天器热控涂层试验方法-第2部分:太阳吸收比测试, 国防科工委军标出版发行部, 2006.
6 Zhang J X, Zou Y J, Xu L, et al. Aerospace Materials and Technology, 2014, 44(6), 88(in Chinese).
张建贤, 邹永军, 徐蕾, 等.宇航材料工艺, 2014, 44(6), 88.
7 Ping T, Zhou Y, Yu C W, et al. Surface Technology, 2020, 49(12), 30(in Chinese).
平托, 周颖, 余成武, 等.表面技术, 2020, 49(12), 30.
8 Zhang Z, Martinsen T, Liu G, et al. Advanced Optical Materials, 2020, 8(19), 2000668.
9 Lehman J, Yung C, Tomlin N, et al. Applied Physics Reviews, 2018, 5(1), 011103.
10 Thostenson E T, Ren Z F, Chou T W.Composites Science and Technology, 2001, 61(13), 1899.
11 Iijima S.Nature, 1991, 354(6348), 56.
12 Peng J, He Y, Zhou C, et al. Chinese Chemical Letters, 2021, 32(5), 1626.
13 Zhang L Q, Yang B, Teng J, et al. Journal of Materials Chemistry C, 2017, 5(12), 3130.
14 Wang J, Musameh M, Lin Y.Journal of the American Chemical Society, 2003, 125(9), 2408.
15 Huang C, Ouyang T, Zou Y, et al. Journal of Materials Chemistry A, 2018, 6(17), 7420.
16 Ouyang T, Ye Y Q, Wu C Y, et al. Angewandte Chemie International Edition, 2019, 58(15), 4923.
17 Wang J Y, Liu W T, Li X P, et al. Chemical Communications, 2020, 56(10), 1489.
18 Wang J Y, Ouyang T, Li N, et al. Science Bulletin, 2018, 63(17), 1130.
19 An G, Ma W, Sun Z, et al. Carbon, 2007, 45(9), 1795.
20 Mizuno K, Ishii J, Kishida H, et al. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15), 6044.
21 Yang Z P, Ci L J, Bur J A, et al. Nano Letters, 2008, 8(2), 446.
22 Saini S, Reshmi S, Gouda G M, et al. Nanoscale Advances, 2021, 3(11), 3184.
23 Ghai V, Singh H, Agnihotri P K.ACS Applied Nano Materials, 2019, 2(12), 7951.
24 Ghai V, Singh H, Agnihotri P K.Journal of Applied Polymer Science, 2019, 137(27), 48855.
25 Liu Y M, Li M, Liu X P.Chinese Journal of Materials Research, 2016, 30(10), 795(in Chinese).
刘宇明, 李蔓, 刘向鹏.材料研究学报, 2016, 30(10), 795.
26 Tian H, Feng Z Z, Wang Y, et al. Vacuum, 2022, 59(5), 80(in Chinese).
田海, 冯展祖, 王鹢, 等.真空, 2022, 59(5), 80.
27 Lv J, Zhang T, Zhang P, et al. Nanoscale Research Letters, 2018, 13(1), 110.
28 Liu X, Coxon P R, Peters M, et al. Energy & Environmental Science, 2014, 7(10), 3223.
29 Yoo J, Yu G, Yi J.Materials Science and Engineering: B, 2009, 159-160(15), 333.
30 Zheng B, Wang W, Jiang G, et al. Applied Physics B, 2016, 122(6), 180.
31 Garnett E, Yang P.Nano Letters, 2010, 10(3), 1082.
32 Vorobyev A Y, Guo C.Laser & Photonics Reviews, 2013, 7(3), 385.
33 Jiang J.The study of preparation and photoelectrical properties of micro/nano two-tier structured black silicon.Ph.D.Thesis, University of Electronic Science and Technology of China, China, 2013(in Chinese).
姜晶.微纳双重结构黑硅的制备及光电特性研究.博士学位论文, 电子科技大学, 2013.
34 Zhao L, Li Z H,, Zheng K H.Vacuum & Cryogenics, 2011, 17(4), 187(in Chinese).
赵琳, 李中华, 郑阔海.真空与低温, 2011, 17(4), 187.
35 Han S, Wu D, Li S, et al. Advanced Materials, 2014, 26(6), 849.
36 Kolotilov S V, Shvets O, Cador O, et al. Journal of Solid State Chemistry, 2006, 179(8), 2426.
37 Mashayekhi M, Ghani K, Razavi R S, et al. Journal of Coatings Technology and Research, 2015, 12(6), 1065.
38 Sun Z, Aigouy L, Chen Z.Nanoscale, 2016, 8(14), 7377.
39 Jiang D H, Qu J, Xu X, et al. Acta Photonica Sinica, 2019, 48(1), 131001(in Chinese).
姜东辉, 曲佳, 徐欣, 等.光子学报, 2019, 48(1), 131001.
40 Cheng W J, Chen Q, Yang C Y, et al. Electronic Components and Materials, 2016, 35(2), 1(in Chinese).
程伟杰, 陈群, 杨春艳, 等.电子元件与材料, 2016, 35(2), 1.
41 Wu J, Liu Y, Yao Y, et al. Journal of Alloys and Compounds, 2021, 877, 160317.
42 Peng B, Ang P K, Loh K P.Nano Today, 2015, 10(2), 128.
43 Bernardi M, Palummo M, Grossman J C.Nano Letters, 2013, 13(8), 3664.
44 Xiao Y, Zhou M, Liu J, et al. Science China Materials, 2019, 62(6), 759.
45 Zeng M, Xiao Y, Liu J, et al. Chemical Reviews, 2018, 118(13), 6236.
46 Li H-J, Ren Y Z, Hu J G, et al. Journal of Lightwave Technology, 2018, 36(16), 3236.
47 Piper J R, Fan S.ACS Photonics, 2016, 3(4), 571.
48 Liu J T, Wang T B, Li X J, et al. Journal of Applied Physics, 2014, 115(19), 193511.
49 Jiang L, Yi Y, Tang Y, et al. Chinese Physics B, 2022, 31(3), 038101.
50 Janisch C, Song H, Zhou C, et al. 2D Materials, 2016, 3(2), 025017.
51 Eda G, Yamaguchi H, Voiry D, et al. Nano Letters, 2011, 11(12), 5111.
52 Wei Y D.Numerical simulation and verified of interaction between atomic oxygen and molybdenum disulfide.Master's Thesis, Harbin Institute of Technology,China, 2016(in Chinese).
魏轶聃.二硫化钼和原子氧相互作用的数值模拟与试验验证.硕士学位论文, 哈尔滨工业大学, 2016.
53 Tian J L.Research on fabrication and property of antireflection quasi-periodic micro/nano srructures functional materials mimicking butterfly wing.Ph.D.Thesis, Shanghai Jiao Tong University, China, 2015(in Chinese).
田军龙.具有蝶翅减反射准周期性微纳结构的功能材料制备及性能研究.博士学位论文, 上海交通大学, 2015.
54 Yu K, Fan T, Lou S, et al. Progress in Materials Science, 2013, 58(6), 825.
55 Bhushan B.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 367(1893), 1445.
56 Zhang W, Gu J, Liu Q, et al. Physical Chemistry Chemical Physics, 2014, 16(37), 19767.
57 Zhao Q, Fan T, Ding J, et al. Carbon, 2011, 49(3), 877.
58 Hou B.Modern Radar, 2021, 43(1), 86(in Chinese).
侯彬.现代雷达, 2021, 43(1), 86.
59 Ding W, Bai J Y, Lin P T, et al. Surface Technology, 2020, 49(12), 38(in Chinese).
丁为, 白晶莹, 蔺鹏婷, 等.表面技术, 2020, 49(12), 38.
60 Uma Rani R, Sharma A K, Minu C, et al. Journal of Applied Electrochemistry, 2009, 40(2), 333.
61 Zhu D C, Zhao S X.Solar Energy Materials and Solar Cells, 2010, 94(10), 1630.
62 Zheng T, Yang C, Zhang Y, et al. Applied Optics, 2021, 60(20), 5759.
63 Her T H, Finlay R J, Wu C, et al. Applied Physics A-Materials Science & Processing, 2000, 70(4), 383.
64 Fan P X, Bai B F, Zhong M L, et al. ACS Nano, 2017, 11(7), 7401.
65 Fan P X, Long J Y, Jiang D F, et al. Chinese Journal of Lasers, 2015, 42(8), 234(in Chinese).
范培迅, 龙江游, 江大发, 等.中国激光, 2015, 42(8), 234.
66 Tao H Y, Lin J Q, Hao Z Q, et al. Applied Physics Letters, 2012, 100(20), 201111.
67 Champagne V, Helfritch D.International Materials Reviews, 2016, 61(7), 437.
68 Yin S, Chen C Y, Suo X K, et al. Advances in Materials Science and Engineering, 2018, 2018, 2804576.
69 Yin Z J, Wang S B, Fu W, et al. Journal of Inorganic Materials, 2011, 26(3), 225(in Chinese).
尹志坚, 王树保, 傅卫, 等.无机材料学报, 2011, 26(3), 225.
70 Choi J, Nakayama W, Okimura N, et al. Journal of Thermal Spray Technology, 2020, 29(8), 1902.
71 Huang C J, Yin S, Li W Y, et al. Surface Technology, 2021, 50(7), 1(in Chinese).
黄春杰, 殷硕, 李文亚, 等.表面技术, 2021, 50(7), 1.
72 Zhang J W.Research on uniformity and control methods for reactive ion etching of large-aperture diffractive optical elements.Ph.D.Thesis, University of Electronic Science and Technology of China, China, 2021(in Chinese).
张景文.大口径衍射光学元件反应离子刻蚀均匀性及调控方法的研究.博士学位论文, 电子科技大学, 2021.
73 Du W T, Zeng Z G, Hu Z Y.Semiconductor Optoelectronics, 2014, 35(1), 57(in Chinese).
杜文涛, 曾志刚, 胡志宇.半导体光电, 2014, 35(1), 57.
74 Liu W F, Zhao Z C, Zhou Z Y, et al. Journal of Materials Science & Engineering, 2020, 38(6), 880(in Chinese).
刘文峰, 赵增超, 周子游, 等.材料科学与工程学报, 2020, 38(6), 880.
75 Yu S Q .Fabrication optimization of silicon micro-nano structures by metal-assisted chemical etching.Master's Thesis, Shanghai Second University of Technology,China, 2021(in Chinese).
余思琦.金属辅助化学刻蚀法制备硅基微纳结构的工艺优化.硕士学位论文,上海第二工业大学, 2021
76 Xi Y L, Zhang W J, Fan Z G, et al. Journal of Solid State Chemistry, 2018, 258, 181.
77 Ma C.Research on the morphology control of absorption layer of perovskite solar cells prepared by vapor deposition.Master's Thesis, Changchun University of Science and Technology,China, 2021(in Chinese).
马超.气相沉积法制备钙钛矿太阳能电池吸光层形态控制的研究.硕士学位论文, 长春理工大学, 2021.
78 Butun S, Aydin K.Optics Express, 2014, 22(16), 19457.
79 Agnihotri P K, Ghai V, Singh H.Scientific Reports, 2018, 8, 12312.
80 Wu J, Cheng Y L, Shiau M K.Journal of Vacuum Science & Technology A, 2010, 28(6), 1363.
81 Meyyappan M.Journal of Physics D-Applied Physics, 2009, 42(21), 213001.
82 Hofmann S, Ducati C, Robertson J, et al. Applied Physics Letters, 2003, 83(1), 135.
83 Arya S, Mahajan P, Mahajan S, et al. ECS Journal of Solid State Science and Technology, 2021, 10(2), 023002.
84 Ab Rahman I, Padavettan V.Journal of Nanomaterials, 2012, 2012, 132424.
85 Bayati M R, Zargar H R, Talimian A, et al. Surface & Coatings Techno-logy, 2010, 205(7), 2483.
86 Danks A E, Hall S R, Schnepp Z.Materials Horizons, 2016, 3(2), 91.
87 Liang B, Zhu H L, Zhang T, et al. Chinese Optics, 2016, 9(1), 16(in Chinese).
梁斌, 朱海龙, 张涛, 等.中国光学, 2016, 9(1), 16.
88 Liu L, Zhang L, Zheng X, et al. Infrared and Laser Engineering, 2007 (S2), 529(in Chinese).
刘垒, 张路, 郑辛, 等.红外与激光工程, 2007 (S2), 529.
89 He Y Y, Wang H L, You S H, et al. Journal of Chinese Inertial Techno-logy, 2020, 28(2), 199(in Chinese).
何贻洋, 王宏力, 由四海, 等.中国惯性技术学报, 2020, 28(2), 199.
90 Shen T.The modeling and analysis of influence from structure-caused stray light of flight vehicles on star sensor.Master's Thesis, Harbin Institute of Technology,China, 2017(in Chinese).
沈涛.结构杂散光对飞行器星敏感器影响的建模分析.硕士学位论文, 哈尔滨工业大学, 2017.
91 Li Y, Liao Z B, Mu S B, et al. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12), 2620(in Chinese).
李洋, 廖志波, 穆生博, 等.北京航空航天大学学报,2016,42(12), 2620.
92 Lu Q.Infrared, 2019, 40(11), 1(in Chinese).
陆强.红外, 2019, 40(11), 1.
93 Shao M Q, Zhang L, Wei L, et al. Acta Optica Sinica, 2019, 39(11), 276(in Chinese).
邵梦旗, 张雷, 魏磊, 等.光学学报, 2019, 39(11), 276.
94 Yu L.Infrared and Laser Engineering, 2022, 51(1), 298(in Chinese).
于磊.红外与激光工程, 2022, 51(1), 298.
95 Zhang J Q, Wu Q W, Yan C X.Spectroscopy and Spectral Analysis, 2010, 30(10), 2861(in Chinese).
张军强, 吴清文, 颜昌翔.光谱学与光谱分析, 2010, 30(10), 2861.
[1] 闫时雨, 纪文涛, 谢克强, 袁晓磊. 宽禁带半导体β-Ga2O3单晶制备工艺研究进展[J]. 材料导报, 2022, 36(Z1): 21050183-6.
[2] 陈杰, 樊正阳, 毛华明, 尹俊刚, 李耀, 代伟, 杨宏伟. 镀银铜纳米颗粒的制备与应用研究进展[J]. 材料导报, 2022, 36(Z1): 21090201-4.
[3] 刘宇, 李彬, 丁二卯, 雷小丽, 宁平. 新型氧化剂材料脱硫脱硝的研究进展[J]. 材料导报, 2022, 36(9): 20070192-8.
[4] 戎鑫, 李建军, 但宏兵, 薛长国, 高明, 李梦, 刘银. 磁化水的特性、机理及应用研究进展[J]. 材料导报, 2022, 36(9): 21020032-7.
[5] 谢鸿翔, 项厚政, 马瑞奇, 陈雨雪, 刘国忠, 姚思远, 冒爱琴. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 20070201-8.
[6] 宋灵婷, 肖文波, 黄乐, 吴华明. 三维、二维卤化物钙钛矿材料性能及应用综述[J]. 材料导报, 2022, 36(5): 20070246-7.
[7] 杨秀烨, 方金祥, 何鹏. 自动焊接传感技术研究现状及发展趋势[J]. 材料导报, 2022, 36(3): 20090224-8.
[8] 高鸿, 樊彦艳, 王立, 刘自立, 何端鹏, 于利夫, 文明. 空间太阳能电站关键材料技术需求展望[J]. 材料导报, 2022, 36(22): 22060164-6.
[9] 梁馨, 宋朝晖, 方洲, 邓火英, 毛科铸, 吴东日. 空间探测烧蚀防热材料应用及发展[J]. 材料导报, 2022, 36(22): 22040315-8.
[10] 靳宇, 曲溪, 文陈, 舒文祥, 赵阔, 徐俊杰, 白晶莹, 崔庆新, 张立功. 空间微生物防护材料研究进展[J]. 材料导报, 2022, 36(22): 22050282-9.
[11] 沈自才, 高鸿, 樊艳艳, 闫继娜, 于云, 刘学超, 王胭脂, 代巍. 航天材料飞行试验进展及发展方向[J]. 材料导报, 2022, 36(22): 22050022-8.
[12] 高鸿, 邢焰, 孙明, 余斌, 李岩, 刘泊天, 吴冰, 于利夫, 樊彦艳. 航天器用材料应用验证技术体系[J]. 材料导报, 2022, 36(22): 22050332-5.
[13] 季启政, 王一凡, 胡小锋, 李兴冀, 杨剑群, 刘尚合. 航天用氮化镓材料的研究进展[J]. 材料导报, 2022, 36(22): 22050023-6.
[14] 孙承月, 郭鑫鑫, 吴忧, 曹争利, 王豪, 琚丹丹, 王岩, 吴宜勇. 聚酰亚胺气凝胶材料的电子/紫外辐照效应及机理分析[J]. 材料导报, 2022, 36(22): 22040378-8.
[15] 杨传超, 徐鸿杰, 田国峰, 张静静, 高鸿, 卓航, 张梦颖, 战佳宇, 武德珍. 高强高模聚酰亚胺纤维的空间环境适应性研究及在航天领域的应用前景分析[J]. 材料导报, 2022, 36(22): 22040361-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed