High Temperature Performance Evaluation and Grading of Warm-mixed Flame Retardant Asphalt Based on MSCR Test
LIU Shengjie1,*, LIN Yu1, LI Mengran2, ZHOU Shengbo3
1 College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China 2 China Design Group, Nanjing 210014, China 3 Guangxi Jiaotou Technology Co., Ltd., Nanning 530000, China
摘要 本研究利用70号道路石油沥青和SBS改性沥青,将温拌剂(Sasobit)、氢氧化铝(ATH)和有机蒙脱土(OMMT)与沥青复配,制备成三种不同阻燃剂掺量(质量分数)的温拌阻燃沥青,采用多应力蠕变恢复(MSCR)试验开展对温拌阻燃沥青高温性能的评价。分别对温拌阻燃沥青在60 ℃下的应变变化、蠕变恢复率(R)、不可恢复蠕变柔量(Jnr)及其相应应力敏感性指标(Rdiff、Jnrdiff)进行分析,并依据AASHTO M 332-20标准对不同阻燃剂掺量的温拌阻燃沥青进行交通分级。结果表明:随着阻燃剂掺量的提高,两种类型沥青的应变值减小,Jnr值呈减小趋势,R值呈增大趋势;阻燃剂掺量较低时,提高其掺量对沥青结合料的高温性能改善效果更加明显;温拌阻燃沥青(道路石油沥青)的Jnr3.2值不满足AASHTO标准中“≤4.5”的要求。温拌阻燃沥青的Jnrdiff值均能满足AASHTO标准中“≤75%”的要求。温拌阻燃沥青(道路石油沥青)未达到标准交通要求而无法分级,温拌阻燃沥青(SBS改性沥青)在4%阻燃剂掺量下达到特重交通的标准,在8%、12%掺量下达到极重交通的标准,因此温拌阻燃沥青(SBS改性沥青)的高温性能更好。基于对温拌阻燃沥青蠕变力学指标、高温交通分级和经济性的综合考虑,推荐复配阻燃剂(ATH、OMMT的质量比为3∶1)的最佳掺量为8%。
Abstract: In order to study the high temperature performance of warm-mixed flame retardant asphalt, the warm agents (Sasobit), aluminum hydroxide (ATH) and organic montmorillonite (OMMT) were added respectively into 70#petroleum asphalt and SBS modified asphalt to prepare warm-mixed flame retardant asphalt with three kinds of different use levels (by mass). The high temperature performance of warm-mixed flame retar-dant asphalt was evaluated by multi-stress creep recovery (MSCR) test at 60 ℃. Then, strain variation percent recovery (R), non-recoverable creep compliance (Jnr) and their stress sensitivity index (Rdiff,Jnrdiff) derived from this test were analyzed. According to AASHTO M 332-20 specification, traffic grading was conducted on modified asphalt with different use levels of flame retardant. The results show that for the two types of asphalt, with the increase of use level of flame retardant, the strain decreases, the non-recoverable creep compliance shows downward trend and percent recovery shows upward trend, especially for flame retardant at lower content, which indicates that the increasing use level of flame retardant is more prominent for the improvement of high temperature performance of asphalt at lower flame retardant content. The Jnr3.2 value of warm mix flame retardant bitumen (road petroleum bitumen) does not meet the requirement of ‘≤ 4.5' in the AASHTO standard. The Jnrdiff values of warm mix flame retardant asphalt can meet the requirement of ‘≤75%' in the AASHTO standard. Warm-mixed flame retardant asphalt (road petroleum asphalt) does not meet the requirements of standard traffic and thus can not be graded, warm-mixed flame retardant asphalt (SBS modified asphalt) reaches the standard of Very Heavy Traffic ‘V' Grade at 4% flame retardant content, and Extremely Heavy Traffic ‘E' Grade at 8% and 12% content, so warm mixed flame retardant asphalt (SBS modified asphalt) has better high temperature performance.Through comprehensive evaluation of various creep mechanical properties indicators, high temperature performance grade and traffic classification and economy, the optimal dosage of compound flame retardant is recommended to be 8%.
刘圣洁, 林钰, 李梦然, 周胜波. 基于MSCR试验的温拌阻燃沥青高温性能评价与分级[J]. 材料导报, 2023, 37(9): 21060064-6.
LIU Shengjie, LIN Yu, LI Mengran, ZHOU Shengbo. High Temperature Performance Evaluation and Grading of Warm-mixed Flame Retardant Asphalt Based on MSCR Test. Materials Reports, 2023, 37(9): 21060064-6.
1 Ren F, Zhang X J, Sun H B, et al. Journal of Chang'an University (Natural Science Edition), 2012, 32(6), 1 (in Chinese). 任梵, 张晓娇, 孙海斌, 等. 长安大学学报(自然科学版), 2012, 32(6), 1. 2 Wang D W, He L Q, Shen P. China Journal of Highway and Transport, 2017, 30(5), 59 (in Chinese). 王大伟, 赫利强, 沈鹏. 中国公路学报, 2017, 30(5), 59. 3 Xiao F P, Guo R, Wang J G. Construction and Building Materials, 2019, 212, 841. 4 Fu Q L, Wei J G, Peng W J, et al. China Journal of Highway and Transport, 2020, 33(2), 44 (in Chinese). 付其林, 魏建国, 彭文举, 等. 中国公路学报, 2020, 33(2), 44. 5 Sun Y N, Li L H. Journal of Building Materials, 2019, 22(5), 750 (in Chinese). 孙艳娜, 李立寒. 建筑材料学报, 2019, 22(5), 750. 6 Liu H Q, Zeiada W, Al-Khateeb G G, et al. Construction and Building Materials, 2021, 269, 121320. 1. 7 Rodrigo Delgadillo, Kitae Nam, Hussain Bahia. Road Materials and Pavement Design, 2006, 7(1), 7. 8 Ali Behnood, Jan Olek. Construction and Building Materials, 2017, 157, 635. 9 Lei Yong, Wang Hainian, Fini E H, et al. Construction and Building Materials, 2018, 191, 692. 10 Guo Y M, Xu L, Wu L, et al. Journal of Building Materials, 2018, 21(1), 154 (in Chinese). 郭咏梅, 许丽, 吴亮, 等. 建筑材料学报, 2018, 21(1), 154. 11 Lei J A, Zheng N X, Xu X Q, et al. Journal of Jiangsu University (Natural Science Edition), 2020, 41(4), 459 (in Chinese). 雷俊安, 郑南翔, 许新权, 等. 江苏大学学报(自然科学版), 2020, 41(4), 459. 12 Yu P H, Nie Y H, Sun S H, et al. Hlighway Engineering, 2022, 47(1), 47 (in Chinese). 余沛涵, 聂忆华, 孙世恒, 等. 公路工程, 2022, 47(1), 47. 13 Hassanpour-Kasanagh S, Ahmedzade P, Fainleib A M, et al. Construction and Building Materials, 2020, 230, 117047. 14 Seyed Alireza Ghanoon, Javad Tanzadeh, Mehrnaz Mirsepahi. Construction and Building Materials, 2020, 238, 117183. 15 Alireza Azarhoosh, Mehdi Koohmishi. Construction and Building Materials, 2020, 255, 119363. 16 Wei J G, Xie C, Fu Q L, et al. China Journal of Highway and Transport, 2013, 26(6), 30 (in Chinese). 魏建国, 谢成, 付其林. 中国公路学报, 2013, 26(6), 30. 17 Guo M. Study on mechanism and multiscale evaluation method of interfacial interaction between asphalt binder and mineral aggregate. Ph. D. Thesis, Harbin Institute of Technology, China, 2015 (in Chinese). 郭猛. 沥青与矿料界面作用机理及多尺度评价方法研究. 博士学位论文, 哈尔滨工业大学, 2015. 18 AASHTO M 332-20, Standard specification for performance-graded asphalt binder using multiple stress creep recovery (MSCR) test, American Association of State Highway and Transportation Officials, Washington DC, 2020. 19 Wu C Y, Lyu Z L. Journal of China & Foreign Highway, 2017, 37(3), 244 (in Chinese). 吴春颖, 吕正龙. 中外公路, 2017, 37(3), 244. 20 Zhu X Z, Sun Y R, Du C, et al. Construction and Building Materials, 2020, 240, 117860.