Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23080193-7    https://doi.org/10.11896/cldb.23080193
  无机非金属及其复合材料 |
共活化法制备等级多孔炭材料及其储能性能研究
邹振羽, 刘伟, 李朋娟, 李晓丽*
东北林业大学化学化工与资源利用学院,哈尔滨 150040
Preparation of Hierarchical Porous Carbon Materials by the Coactivation Method and Their Energy Storage Properties
ZOU Zhenyu, LIU Wei, LI Pengjuan, LI Xiaoli*
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
下载:  全 文 ( PDF ) ( 16439KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了进一步提高生物质活性炭的电化学储能性能,本工作以废弃桉木屑为前驱体,经低共熔溶剂(Deep eutectic solvent,DES)法抽提处理后,再以磷腈衍生物(HCPCP-K)和氢氧化钾(KOH)为共活化剂,制备了等级多孔炭材料(HPC)。其中,HPC-1-4.35材料的比表面积为1 987.43 m2/g,总孔体积为1.313 6 cm3/g,微/介孔比例接近1∶1。电化学测试结果表明,HPC-1-4.35电极材料在电流密度为1 A/g时比电容为555 F/g,在电流密度为20 A/g时比电容达398 F/g,表明其具有出色的倍率性能。由其组装的对称电容器HPC-1-4.35∥HPC-1-4.35在功率密度为179.7 W/kg时能量密度达到30.6 Wh/kg,在电流密度为2 A/g时经过5 000次充放电循环后电容保持率为85%。在-20 ℃、功率密度为63.07 W/kg时,该电容器的能量密度为9.8 Wh/kg,表明其具有较好的低温储能性能,有望拓宽超级电容器的适应温度范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邹振羽
刘伟
李朋娟
李晓丽
关键词:  共活化剂  氮磷掺杂  等级多孔碳  超级电容器    
Abstract: In order to further improve the electrochemical energy storage performance of activated biomass carbon, hierarchical porous carbon material (HPC) was obtained by activating the waste wood pre-extracted with DES using different proportions of KOH and cyclotriphosphazene deri-vatives (HCPCP-K) as co-activators. Among the carbon materials obtained, the optimal carbon material HPC-1-4.35 possesses a high surface area and a total pore volume up to 1 987.43 m2/g and 1.313 6 cm3/g, respectively, and the corresponding proportion of microporous and mesoporous was close to 1∶1. Electrochemical tests showed that HPC-1-4.35 electrode displayed excellent specific capacitance of 555 F/g at a current density of 1 A/g and 398 F/g at a current density of 20 A/g, which revealed excellent rate capability. Meanwhile, in the two-electrode system, the assembled symmetric supercapacitors HPC-1-4.35∥HPC-1-4.35 exhibited a higher specific energy density of 30.6 Wh/kg with an excellent power density of 179.7 W/kg at room temperature and a perfect energy density of 9.8 Wh/kg at a power density of 63.07 W/kg at -20 ℃. Furthermore, it showed good cycling stability because the capacitance retention rate was 85% after 5 000 cycles of charging and discharging at a current density of 2 A/g.
Key words:  co-activator    nitrogen and phosphorus doping    hierarchical porous carbon materials    supercapacitor
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TQ424.1  
基金资助: 黑龙江省自然科学基金联合引导项目(LH2020C040)
通讯作者:  *李晓丽,博士,东北林业大学化学化工与资源利用学院副教授、硕士研究生导师。目前主要从事生物质碳材料的制备与性能研究、磷腈衍生物合成与阻燃性能研究。lixiaoli0903@163.com   
作者简介:  邹振羽,东北林业大学化学化工与资源利用学院硕士研究生。目前主要从事生物质碳材料电化学储能性能研究。
引用本文:    
邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
ZOU Zhenyu, LIU Wei, LI Pengjuan, LI Xiaoli. Preparation of Hierarchical Porous Carbon Materials by the Coactivation Method and Their Energy Storage Properties. Materials Reports, 2025, 39(3): 23080193-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080193  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23080193
1 Baig M M, Khan M A, Gul I H, et al. Journal of Electronic Materials, 2023, 52 (9), 5775.
2 Abdullin K A, Gabdullin M T, Kalkozova Z K, et al. Energies, 2023, 16 (11), 19.
3 Koohi-Fayegh S, Rosen M A. Journal of Energy Storage, 2020, 27, 23.
4 Oyedotun K O, Ighalo J O, Amaku J F, et al. Journal of Electronic Materials, 2023, 52 (1), 96.
5 Kumar Y A, Koyyada G, Ramachandran T, et al. Nanomaterials, 2023, 13 (6), 35.
6 Arumugam B, Mayakrishnan G, Manickavasagam S K S, et al. Crystals, 2023, 13 (7), 28.
7 Duan H J, Liu Y J, Zhao X M. Textile Research Journal, 2023, 93 (15-16), 3884.
8 Liang Y, Huang G, Zhang Q, et al. Journal of Molecular Liquids, 2021, 330, 115580.
9 Shrestha L K, Shrestha R G, Shahi S, et al. Journal of Oleo Science, 2023, 72 (1), 11.
10 Zheng C Q, Gong H, Jiang Y W, et al. ACS Applied Nano Materials, 2023, 6 (15), 14136.
11 Song S J, Ma F W, Wu G, et al. Journal of Materials Chemistry A, 2015, 3 (35), 18154.
12 Feng H B, Hu H, Dong H W, et al. Journal of Power Sources, 2016, 302, 164.
13 Liang Q H, Ye L, Huang Z H, et al. Nanoscale, 2014, 6 (22), 13831.
14 Khalafallah D, Quan X Y, Ouyang C, et al. Renewable Energy, 2021, 170, 60.
15 Lan D W, Chen M Y, Liu Y C, et al. Journal of Materials Science-Materials in Electronics, 2020, 31 (21), 18541.
16 Correa C R, Otto T, Kruse A. Biomass & Bioenergy, 2017, 97, 53.
17 Xu C P, Arancon R A D, Labidi J, et al. Chemical Society Reviews, 2014, 43 (22), 7485.
18 Zhang X F, Ma X F, Hou T, et al. Angewandte Chemie-International Edition, 2019, 58 (22), 7366.
19 Wang Q, Wang Y, Zeng J J, et al. Flatchem, 2022, 34, 8.
20 Song Y, Xing X, Bu Y, et al. Modern Chemical Industry, 2022, 42 (3), 199.
21 Wang Y, Ruan W, Zhou Y. Modern Chemical Industry, 2023, 43 (2), 142.
22 Nazari N, Abadi M D M, Khachatourian A M, et al. Diamond and Related Materials, 2023, 137, 12.
23 Wang J A, Wang M F, Liang Y, et al. Physica B-Condensed Matter, 2023, 648, 6.
24 Bing B C, Li B, Jia H, et al. Chinese Journal of Applied Chemistry, 2009, 26 (7), 753(in Chinese).
邴柏春, 李斌, 贾贺, 等. 应用化学, 2009, 26 (7), 753.
25 Suopajarvi T, Ricci P, Karvonen V, et al. Industrial Crops and Pro-ducts, 2020, 145, 111956.
26 Nouri S, Haghseresht F. Adsorption-Journal of the International Adsorption Society, 2004, 10 (1), 69.
27 Qin C, Wang S R, Wang Z P, et al. Journal of Energy Storage, 2021, 33, 10.
28 Lillo-Rodenas M A, Cazorla-Amoros D, Linares-Solano A. Carbon, 2003, 41 (2), 267.
29 Kamiya A, Togawa T. The Bulletin of Mathematical Biophysics, 1972, 34 (4), 431.
30 Kamiya A, Togawa T, Yamamoto A. Bulletin of Mathematical Biology, 1974, 36 (3), 311.
31 Hulicova D, Kodama M, Hatori H. Chemistry of Materials, 2006, 18 (9), 2318.
32 Liu M X, Gan L H, Xiong W, et al. Energy & Fuels, 2013, 27 (2), 1168.
33 Xu S W, Zhao Y Q, Xu Y X, et al. Journal of Power Sources, 2018, 401, 375.
34 Xue D F, Zhu D Z, Xiong W, et al. ACS Sustainable Chemistry & Engineering, 2019, 7 (7), 7024.
35 Zhang Y, Zhang L, Cheng L, et al. Applied Surface Science, 2021, 538, 8.
36 Chen J, Wei H M, Chen H J, et al. Electrochimica Acta, 2018, 271, 49.
37 Wang T, Zang X B, Wang X M Z, et al. Energy Storage Materials, 2020, 30, 367.
38 Liu H Y, Song H H, Chen X H, et al. Journal of Power Sources, 2015, 285, 303.
39 Qie L, Chen W M, Xu H H, et al. Energy & Environmental Science, 2013, 6 (8), 2497.
40 Qian W J, Sun F X, Xu Y H, et al. Energy & Environmental Science, 2014, 7 (1), 379.
41 Wu M, Xu S, Li X, et al. Journal of Energy Storage, 2021, 40, 8.
[1] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[2] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[3] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[4] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[5] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[6] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[7] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[8] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[9] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[10] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[11] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[12] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[13] 颜冬仙, 樊新. rGO/NiCo复合材料制备及电化学性能研究[J]. 材料导报, 2023, 37(18): 22030311-6.
[14] 秦珩, 李凯霖, 戴兴健, 周欢, 张育新. Co3O4@MnSiO3@硅藻土三元复合材料的制备及赝电容性能提升机理[J]. 材料导报, 2023, 37(11): 21110025-6.
[15] 张英, 曹亦俊, 彭伟军, 苗毅恒, 刘曙光. 基于3D打印的三维石墨烯基电极研究进展[J]. 材料导报, 2023, 37(11): 21070040-13.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed