Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23100152-10    https://doi.org/10.11896/cldb.23100152
  无机非金属及其复合材料 |
一维HfC、ZrC、TaC的制备与应用
任金翠*, 吴义胜, 李欣沂, 唐艳姿
西安建筑科技大学材料科学与工程学院,西安 710055
Preparation and Application of One-dimensional HfC, ZrC, and TaC
REN Jincui*, WU Yisheng, LI Xinyi, TANG Yanzi
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 19838KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 HfC、ZrC、TaC具有超高的熔点、良好的耐高温、抗氧化、耐化学腐蚀性及较高的机械强度等优异性能。一维HfC、ZrC、TaC不仅具有其块体材料的优异性能也具有一维材料良好的力学性能,作为增韧材料、高温防护材料、电子材料、电化学催化材料、储氢材料等受到广泛关注。综述了化学气相沉积法(CVD)、有机先驱体转化法、熔盐法等一维HfC、ZrC、TaC的制备方法。综述了一维HfC、ZrC、TaC在增强增韧材料、电极材料、电催化材料等应用领域的国内外研究进展。讨论了当前一维HfC、ZrC、TaC原料价格昂贵、原料利用率低、制备工艺复杂等尚存的问题,并且对其未来研究方向的发展趋势提出了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任金翠
吴义胜
李欣沂
唐艳姿
关键词:  一维材料  碳化铪  碳化锆  碳化钽  生长机制  影响因素    
Abstract: HfC, ZrC and TaC exhibit excellent properties such as ultra-high melting point, good high temperature resistance, oxidation resistance, chemical corrosion resistance and high mechanical strength. One-dimensional HfC, ZrC and TaC not only enjoy excellent performance of their bulk materials but also have good mechanical properties of one-dimensional materials. Therefore, they have attracted extensive attention as toughening materials, high temperature protection materials, electronic materials, electrochemical catalytic materials and hydrogen storage material. Preparation methods of one-dimensional HfC, ZrC and TaC by chemical vapor deposition (CVD) methods, organic precursor transformation method and molten salt method are reviewed. Research progress of one-dimensional HfC, ZrC and TaC used as toughening and strengthening material, electrode material and electrocatalytic material is reviewed. Existing problems of one-dimensional HfC, ZrC and TaC are discussed, such as high cost and low utilization rate of raw material and complex preparation process. Development trend of the future research direction of one-dimensional HfC, ZrC and TaC is proposed.
Key words:  one-dimensional material    hafnium carbide    zirconium carbide    tantalum carbide    growth mechanism    influencing factor
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TQ127.12  
基金资助: 陕西省自然科学基础研究计划一般项目(2024JC-YBMS-377);陕西省教育厅重点科学研究计划协同创新中心项目(23JY046);超高温结构复合材料重点实验室基金(2021-JCJQ-LB-073-01-02)
通讯作者:  *任金翠,博士,西安建筑科技大学材料科学与工程学院副教授。主要从事碳化物纳米线、陶瓷粉体以及C/C复合材料、石墨材料表面抗氧化烧蚀涂层的制备和性能研究。renjincui@xauat.edu.cn   
引用本文:    
任金翠, 吴义胜, 李欣沂, 唐艳姿. 一维HfC、ZrC、TaC的制备与应用[J]. 材料导报, 2025, 39(2): 23100152-10.
REN Jincui, WU Yisheng, LI Xinyi, TANG Yanzi. Preparation and Application of One-dimensional HfC, ZrC, and TaC. Materials Reports, 2025, 39(2): 23100152-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100152  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23100152
1 Liu H, Tong K, Feng X, et al. Journal of Materials Science, 2023, 58(1), 157.
2 Zhang J, Mcmahon J M. Journal of Materials Science, 2021, 56(6), 4266.
3 Jaramillo-cabanzo D F, Ajayib P, Meduri P, et al. Journal of Physics D: Applied Physics, 2020, 54(8), 083001.
4 Yuan S, Zhang Q. Frontiers in Chemistry, 2021, 9, 812287.
5 Zeng Q, Deng N, Wang S S, et al. ChemElectroChem, 2022, 9(21), e202200946.
6 Sun Y, Cui H, Li G, et al. ACS Nano, 2011, 5(2), 932.
7 Du J, Cai M Z, Yan S J, et al. Powder Metallurgy Materials Science and Engineering, 2022, 27(3), 237 (in Chinese).
杜军, 蔡明柱, 严石静, 等. 粉末冶金材料科学与工程, 2022, 27(3), 237.
8 Bhattacharyya S, Harrison J F. Computational and Theoretical Chemistry, 2022, 1216, 113853.
9 Liu N, Tian C Y, Shu S M, et al. Journal of the Chinese Ceramic Society, 1998, 26(2), 80(in Chinese).
刘宁, 田春艳, 舒士明, 等. 硅酸盐学报, 1998, 26(2), 80.
10 Zhang Y W. Structural characterization and electrical properties of zirconium carbide. Master's Thesis, Wuhan University of Technology, China, 2012 (in Chinese).
张育伟. 碳化锆的结构表征与电性能硏究. 硕士学位论文, 武汉理工大学, 2012.
11 Wu S Q, Zhu X K, Luo Y, et al. Journal of Materials Science and Engineering, 2004, 2(22), 272 (in Chinese).
吴胜琴 朱心昆, 罗毅, 等. 材料科学与工程学报, 2004, 2(22), 272.
12 Chrystie R S M. The Chemical Record, 2023, DOI:10.1002/tcr.202300087.
13 Zhang J, Wang C Y, Adhikari S. Journal of Physics D: Applied Physics, 2012, 45(28), 285301.
14 Haus J W, De ceglia D, Vincenti M A, et al. Journal of the Optical So-ciety of America B, 2014, 31(6), A13.
15 Ayatollahi M R, Shadlou S, Shokrieh M M, et al. Polymer Testing, 2011, 30(5), 548.
16 Shin J, Kang N, Kim B, et al. Chemical Society Reviews, 2023, 52, 4488.
17 Huo K F, Hu Y M, Ma Y W, et al. Nanotechnology, 2007, 18(14), 145615.
18 Shi L, Gu Y L, Chen L Y, et al. Chemistry Letters, 2004, 33(12), 1546.
19 Tian S, Li H J, Zhang Y L, et al. Journal of the American Ceramic Society, 2014, 97(1), 48.
20 Li F P, Xu Z L, Zhao K, et al. Materials Letters, 2018, 230, 249.
21 Tian S, Zhang Y L, Ren J C, et al. Applied Surface Science, 2017, 402, 344.
22 Chen D Y, Liu Y, Zheng Y, et al. Physical Review B, 2022, 106(23), 235427.
23 Li Y L, Luo W, Zeng Z. National Academy of Sciences of the United States of America,2013, 110(23), 9289.
24 Qiang X F. Research on CVD fabrication and properties of anti-oxidation SiCNW-SiC coating for carbon/carbon composites. Ph. D. Thesis, Northwestern Polytechnical University, China, 2014 (in Chinese).
强新发. C/C复合材料SiCNW-SiC抗氧化涂层 CVD法制备及性能研究. 博士学位论文, 西北工业大学, 2014.
25 Ryu Z Y, Zheng J T, Wang M Z, et al. Carbon, 2002, 40(5), 715.
26 Liang Z T. In situ growth of HfC nanowires and modification of C/C composites. Master's Thesis, Chongqing Jiaotong University, China, 2019 (in Chinese).
梁中天. HfC纳米线的原位生长及其改性C/C复合材料. 硕士学位论文, 重庆交通大学, 2019.
27 Lee D J, Song S H. International Journal of Materials Research, 2017,118, 693.
28 Ren J C, Duan Y T, Lv C F, et al. Ceramics International, 2021, 47(6), 7853.
29 Ren J C, Zhang Y L, Hu H, et al. Applied Surface Science, 2016, 360, 970.
30 Tian S, Li H J, Zhang Y L, et al. Journal of Alloys and Compounds, 2013, 580, 407.
31 Tian S, Li H J, Zhang Y L, et al. Journal of Crystal Growth, 2013, 384, 44.
32 Fei T. Study on modification of C/C composites by in-situ growth of HfC nanowires. Master's Thesis, Northwestern Polytechnical University, China, 2017 (in Chinese).
费甜. 原位生长HfC纳米线改性C/C复合材料研究. 硕士学位论文, 西北工业大学, 2017.
33 Fu Y Q. HfC nanowires and toughened C/C composites were prepared by precursor pyrolysis. Master's Thesis, Northwestern Polytechnical University, China, 2019 (in Chinese).
付艳芹. 先驱体裂解制备 HfC 纳米线及其增韧 C/C 复合材料. 硕士学位论文, 西北工业大学, 2019.
34 Feng E R. Preparation and ablation resistance of HfC/PyC core-shell structure nanowire-reinforced HfC-ZrC coating. Master's Thesis, Xi'an University of Architecture and Technology, China, 2022(in Chinese).
冯二荣. HfC/PyC核壳结构纳米线增韧HfC-ZrC涂层的制备和抗烧蚀性能研究. 硕士学位论文, 西安建筑科技大学, 2022.
35 Yan N N. Study on in-situ growth of ZrC nanowires/tubes modified C/C composite. Master's Thesis, Northwestern Polytechnical University, China, 2018 (in Chinese).
闫宁宁. 原位生长ZrC纳米线/管改性C/C复合材料研究. 硕士学位论文, 西北工业大学, 2018.
36 Yan N N, Shi X H, Li K, et al. Composites Part B:Engineering, 2018, 154, 200.
37 Wang H D. Study on the preparation of zirconium silicate whisker. Master's Thesis, Jingdezhen Ceramic Institute, China, 2014(in Chinese).
王洪达. 硅酸锆晶须制备的研究. 硕士学位论文, 景德镇陶瓷学院, 2014.
38 Cheng S, Cheng L F, Ye F, et al. Ceramics International, 2020, 46(17), 27463.
39 Zhang J, Zhao L, Li H Y, et al. Journal of Crystal Growth, 2021, 568, 126183.
40 Xu L, Huang C Z, Liu H L, et al. International Journal of Refractory Metals and Hard Materials, 2014, 42, 116.
41 Mu J R, Shi X H, Zheng H R, et al. Ceramics International, 2020, 47(3), 3063.
42 Cui X M, Nam Y S, Lee J Y, et al. Materials Letters, 2008, 62(12-13), 1961.
43 Sander M S, Cote M J, Gu W, et al. Advanced Materials, 2004, 16(22), 2052.
44 Zhang P Y. Study on preparation of one-dimensional mullite ceramics by molten salt method. Ph. D. Thesis, Tianjin University, China, 2010 (in Chinese).
张鹏宇. 熔盐法制备一维莫来石陶瓷材料的研究. 博士学位论文, 天津大学, 2010.
45 Du J, Yang Y C, Fan Z, et al. Journal of Alloys and Compounds, 2013, 560, 142.
46 Li N, Yan Y, Xia B Y, et al. Biosensors and Bioelectronics, 2014, 54, 521.
47 Yan Y, Zhang L, Qi X Y, et al. Small, 2012, 8(21), 3350.
48 Tao X Y, Zhou S X, Ma J, et al. Ceramics International, 2017, 43(4), 3910.
49 Wang K, Zhao K, Meng Q N, et al. Ceramics International, 2022, 48(17), 25474.
50 Johnsson M, Nygren M. Journal of Materials Research, 1997, 12(9), 2419.
51 Futamoto M, Yuito K, Awabe U. Journal of Crystal Growth, 1983, 61(1), 69.
52 Li K Z, Zhou X, Zhao Z G, et al. Journal of Solid State Chemistry, 2018, 258, 383.
53 Li J H, Zhang Y L, Fu Y Q, et al. Ceramics International,2018, 44(11), 13335.
54 Krishnarao R V, Subrahmanyam J, Ramakrishna V, et al. Journal of Materials Synthesis and Processing, 2001, 9(1), 1.
55 Johnsson M, Nygren M. Journal of Materials Research, 1997, 12(9), 2419.
56 Chen Y J, Li J B, Wei Q M, et al. Journal of Crystal Growth, 2000, 224(3-4), 279.
57 Qiu Z, Huang H, Du J, et al. Journal of Materials Chemistry A, 2014, 2(21), 8003.
58 Tao X Y, Du J, Yang Y C, et al. Crystal Growth & Design, 2011, 11(10), 4422.
59 Yyan X Y, Cheng L F, Kong L, et al. Journal of Alloys and Compounds, 2014, 596, 132.
60 Ren J C. Study on toughening of HfC based anti-ablative coatings by chemical vapor deposition HfC nanowires. Ph. D. Thesis, Northwestern Polytechnical University, China, 2018.
任金翠. 化学气相沉积HfC纳米线增韧HfC基抗烧蚀涂层研究. 博士学位论文, 西北工业大学, 2018.
61 Ren J C, Zhang Y L, Fu Y Q, et al. Ceramics International, 2019, 45(5), 5321.
62 Zhang Y L, Ren J C, Tian S, et al. Corrosion Science, 2015, 90, 554.
63 Zhang Y L, Ren J C, Tian S, et al. Applied Surface Science, 2014, 311, 208.
64 Zhao G L, Huang C Z, Liu H L, et al. International Journal of Refractory Metals & Hard Materials, 2012,19(8), 122.
65 Yuan J S, Zhang H, Tang J, et al. Applied Physics Letters, 2012, 100(11), 113111.
66 Yang Y C, Liu L, Wei Y, et al. Carbon, 2010, 48(2), 531.
67 Zhnag J, Yang C, Wang Y J, et al. Nanotechnology, 2006, 17(1), 257.
68 Yang Y C, Qian L, Tang J, et al. Applied Physics Letters, 2008, 92(15), 153105.
69 Tian S, Li H J, Zhang Y L, et al. CrystEngComm, 2014,221, 16(15), 3186.
70 Mavkie W, Matthews M R et al. Journal of Vacuum Science & Technology, B Microelectronics and Nanometer Structures: Processing, Measurement and Phenomena, 1998, 16(4), 2057.
71 Chiu T W, Tang J, Tang S, et al. Materials Today Communications, 2020, 25, 101240.
72 Yin X M, Li H J, Fu Y Q, et al. Chemical Engineering Journal, 2020, 392, 124820.
73 Qiu Z, Huang H, Du J, et al. The Journal of Physical Chemistry C, 2013, 117(27), 13770.
[1] 李明新, 魏智磊, 张彪, 赵蕾, 史忠旗. 超细等轴状AlN粉体的燃烧合成制备及机理研究[J]. 材料导报, 2025, 39(1): 23120118-5.
[2] 齐顺顺, 王文健, 汪渊, 丁昊昊. 贝氏体钢轨磨损与接触疲劳行为的研究进展[J]. 材料导报, 2025, 39(1): 23090020-11.
[3] 王彦, 杨凯, 吕绪明, 党博, 魏东博, 张平则. 石墨表面双辉等离子Ta/TaC涂层抗热震性能研究[J]. 材料导报, 2024, 38(23): 23080013-9.
[4] 张洋洋, 张群力, 赵庆新, 吴凯, 常钧. 硫铝酸盐水泥水化产物-铝凝胶的研究进展[J]. 材料导报, 2024, 38(14): 23050153-9.
[5] 宋杰, 丁红蕾, 潘卫国, 张凯, 马骏驰, 张子沂. 二氧化锰基催化剂催化氧化甲苯的进展[J]. 材料导报, 2024, 38(13): 23030015-11.
[6] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[7] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[8] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[9] 王凤姣, 白晓宇, 张云光, 井德胜, 张明义, 王海刚, 侯东帅. 不同材质抗浮锚杆与基础底板的黏结强度试验研究[J]. 材料导报, 2023, 37(22): 22050046-8.
[10] 陈飞, 李先延, 高家贵, 王永俊, 张林艳, 封基良. 基于IDEAL-CT试验评价后掺法温拌环氧沥青混合料抗裂性能[J]. 材料导报, 2023, 37(20): 22040288-7.
[11] 吴应雄, 郑新颜, 黄伟, 郑祥浴, 陈宝春. 超高性能混凝土-既有普通混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 21120057-11.
[12] 桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
[13] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[14] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[15] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed