Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23100113-7    https://doi.org/10.11896/cldb.23100113
  高分子与聚合物基复合材料 |
N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究
李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽*
东北林业大学化学化工与资源利用学院,哈尔滨 150040
Preparation and Zinc Storage Properties of N/O/P Co-doped Melamine-based Porous Carbon Materials
LI Pengjuan, ZOU Zhenyu, HUANG Pengfei, JIN Xin, WU Xiaoyu, LI Xiaoli*
College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
下载:  全 文 ( PDF ) ( 9988KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以三聚氰胺(Melamine)、六对醛基苯氧基环三磷腈(HAPCP)为原料,采用水热法制备富含氮、磷、氧元素的交联产物,通过炭化-活化法制备碳基材料,将其用作锌离子混合电容器的阴极材料。采用扫描电镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、拉曼光谱(Raman)、氮气吸-脱附实验(N2 adsorption-desorption)对碳基材料的形貌、结构以及化学成分进行表征分析。测试结果表明:碳基材料表面多孔粗糙,具有无定形碳结构,且含有氮、磷和氧原子。HAPCP与三聚氰胺物质的量比为1∶5且活化温度为800 ℃的碳基材料(HMAc-800)在0.5 A·g-1电流密度下的比电容高达390 F·g-1。以HMAc-800为阴极、锌片为阳极组装的锌离子混合电容器在能量密度139 Wh·kg-1时功率密度达456 W·kg-1,具有良好的储能能力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李朋娟
邹振羽
黄鹏飞
金鑫
吴晓雨
李晓丽
关键词:  三聚氰胺  碳基材料  电化学性能  锌离子混合电容器    
Abstract: In this work, via a hydrothermal process, melamine and hexa-p-aldehyde phenoxycyclotriphosphazene (HAPCP) were used as raw materials to prepare the cross-linking product rich in nitrogen, phosphorus, and oxygen, which was subsequently carbonized and activated to obtain the carbon-based electrode material for cathode of zinc-ion hybrid capacitors. The morphology, structure, and chemical composition of the carbon-based electrode material were characterized by means of scanning electron microscopy (SEM), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and nitrogen adsorption-desorption test. The experiment indicated that the prepared carbon-based material had a porous and rough surface morphology, amorphuous carbon structure, and contained nitrogen, phosphorus, and oxygen heteroatoms. The resultant product with a HAPCP/melamine molar ratio of 1∶5 and an activation temperature of 800 ℃ (HMAc-800) exhibited a specific capacitance of 390 F·g-1 at a current density of 0.5 A·g-1. The zinc-ion hybrid capacitor, assembled with HMAc-800 as the cathode material and a zinc sheet as the anode, delivered a power density of 456 W·kg-1 at an energy density of 139 Wh·kg-1, demonstrated a strong energy storage capacity.
Key words:  melamine    carbon-based material    electrochemical performance    zinc-ion hybrid capacitor
出版日期:  2025-01-25      发布日期:  2025-01-21
通讯作者:  *李晓丽,东北林业大学化学化工与资源利用学院副教授、硕士研究生导师。目前主要从事磷腈衍生物的制备及其在阻燃材料和电化学储能领域的应用研究。lixiaoli0903@163.com   
引用本文:    
李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
LI Pengjuan, ZOU Zhenyu, HUANG Pengfei, JIN Xin, WU Xiaoyu, LI Xiaoli. Preparation and Zinc Storage Properties of N/O/P Co-doped Melamine-based Porous Carbon Materials. Materials Reports, 2025, 39(2): 23100113-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23100113  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23100113
1 Zhu Q, Zhao D, Cheng M, et al. Advanced Energy Materials, 2019, 9(36), 1901081.
2 Wei F, Zeng Y, Guo Y, et al. Chemical Engineering Journal, 2023, 468, 143576.
3 Liu Y, Wu L. Nano Energy, 2023, 109,108290.
4 Titirici M M, White R J, Brun N, et al. Chemical Society Reviews, 2015, 44(1), 250.
5 Jagadale A D, Rohit R C, Shinde S K, et al. ChemNanoMat, 2021, 7(10), 1082.
6 Zhang D, Li L, Gao Y, et al. ChemElectroChem, 2021, 8(9), 1541.
7 Yang X J, Liu Y X. Zhejiang Chemical Industry, 2017, 48(1), 26(in Chinese).
杨晓洁, 刘迎新. 浙江化工, 2017, 48(1), 26.
8 Fan H, Hu X, Zhang S, et al. Carbon, 2021, 180, 254.
9 Yang L, He X, Wei Y, et al. Nano Research, 2022, 15(5), 4068.
10 Chen A B,Wang Y Y, Yu Y F, et al. Journal of Materials Science, 2017, 52, 3153.
11 Wang D W, Pan Z M, Chen G X, et al. Electrochimica Acta, 2021, 379, 138170.
12 Shen Z F, Song Y, Yin C C, et al. Microporous and Mesoporous Mate-rials, 2021, 322, 111158.
13 Sheng Z, Lin X C, Wei H, et al. Journal of Power Sources, 2021, 515, 230629.
14 Wang S, Feng J F, Pan H. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129622.
15 Wang Y L,Zhao P Y,et al. Carbon, 2023, 22, 66.
16 Liu T, Zhang L Y, You W, et al. Small, 2018, 14(12), 1702407.
17 Liu P G, Gao Y, Tan Y Y, et al. Nano Research, 2019, 12(11), 2835.
18 Shaikh J S, Shaikh N S, Sabale S, et al. Materials Today Chemistry, 2021, 21,100480.
19 Altinci O C, Demir M. Energy & Fuels, 2020, 34(6), 7658.
20 Lu S Y, Lu Y, Jin M, et al. Applied Surface Science, 2017, 422, 900.
21 Li Z J, Wang D Z, Sun Z C, et al. Electrochimica Acta, 2023, 455,142440.
22 Cheng H L, Chen X C, Yu H Y, et al. ACS Applied Energy Materials, 2020, 3(10), 10080.
23 Zhu C, Wang M, Yang G, et al. Journal of Solid State Electrochemistry, 2017, 21(12), 3631.
24 Shao D N, Wang L, Guo J Y, et al. Journal of Materials Science: Mate-rials in Electronics, 2020, 31(13), 10811.
25 Lin X H, Yin S M, Zhang W B, et al. Diamond and Related Materials, 2022, 125,109025.
26 Cui H N, Mi H Y, Ji C C, et al. Journal of Materials Chemistry A, 2021, 9(42), 23941.
27 Chen S H, Yang G Q, Zhao X J, et al. Frontiers in Chemistry, 2020, 8, 663
28 Sun G Q, Xiao Y K, Lu B, et al. ACS Applied Materials & Interfaces, 2020, 12, 7239.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[3] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[4] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[5] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[6] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[7] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[8] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[9] 康小雅, 何天启, 朱福良, 冉奋. 蜂窝状多孔碳材料装载硫单质及其在锂硫电池中的储能性能研究[J]. 材料导报, 2024, 38(16): 23010004-6.
[10] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[11] 毕江元, 宋述鹏, 丁兴, 柯德庆, 周和荣. AMT及其复配剂对青铜合金的缓蚀机理研究[J]. 材料导报, 2024, 38(11): 23020250-6.
[12] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[13] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[14] 王环江, 杨启亮, 张雨晨, 徐磊, 刘娟, 任嗣利. 原位接枝纳米炭黑水包油型破乳剂制备与性能评价[J]. 材料导报, 2023, 37(4): 21070242-6.
[15] 杨文飞, 张勇, 樊伟杰, 王安东, 董星龙. 直流电弧等离子体下共蒸发无定型TiO2基纳米复合材料及储锂性能[J]. 材料导报, 2023, 37(19): 22030288-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed