Please wait a minute...
材料导报  2018, Vol. 32 Issue (18): 3099-3103    https://doi.org/10.11896/j.issn.1005-023X.2018.18.001
  无机非金属及其复合材料 |
基体偏压对AlCrSiN涂层结构及力学性能的影响
唐明1,2, 代明江2, 韦春贝2, 邱万奇1, 林松盛2, 侯惠君2, 李洪2
1 华南理工大学材料科学与工程学院,广州 510640;
2 广东省新材料研究所,现代材料表面工程技术国家工程实验室,广东省现代表面工程技术重点实验室,广州 510651
Effects of Bias Voltage on Microstructure and Mechanical Property of AlCrSiN Coatings
TANG Ming1,2, DAI Mingjiang2, WEI Chunbei2, QIU Wanqi1, LIN Songsheng2, HOU Huijun2, LI Hong2
1 School of Material Science and Engineering, South China University of Technology, Guangzhou 510640;
2 National Engineering Laboratory for Modern Materials Surface Engineering Technology, The Key Laboratory of Guangdong for Modern Surface Engineering Technology, Guangdong Institute of New Materials, Guangzhou 510651
下载:  全 文 ( PDF ) ( 3140KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 AlCrSiN涂层因具有高硬度、优异的耐磨损性及抗高温氧化性而备受关注。为提高AlCrSiN涂层的性能,采用电弧离子镀技术制备了AlCrSiN涂层,研究了基体偏压对AlCrSiN涂层微观组织及力学性能的影响。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、显微硬度计、划痕仪及球-盘式摩擦磨损试验机对AlCrSiN涂层的表面形貌、物相组成和力学性能进行表征。研究结果表明:不同基体偏压的AlCrSiN涂层具有B1-NaCl晶体结构和无柱状晶结构;适当提高基体偏压,可细化AlCrSiN涂层的晶粒,提高涂层的表面质量及致密性,从而提高涂层的性能;基体偏压为150 V的涂层致密性最好,具有更高的硬度(3 430HV)、结合力(76 N)及更好的耐磨损性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐明
代明江
韦春贝
邱万奇
林松盛
侯惠君
李洪
关键词:  电弧离子镀  基体偏压  AlCrSiN涂层  力学性能    
Abstract: AlCrSiN coatings have attracted extensive attention due to high hardness,excellent wear and oxidation resistance.In order to improve properties of the AlCrSiN coatings, the effects of bias voltage on the structure and properties of the AlCrSiN coa-tings deposited by multi-arc plating were investigated. The surface and cross-section morphologies, phase composition and mechanical properties of the AlCrSiN coatings were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), microindentor,scratch tester, ball-on-disc wear tester and 3D profiler. The results show that the crystallizes of AlCrSiN coatings are B1-NaCl type with glassy and featureless cross morphology.Increasing the value of bias voltage improves the properties AlCrSiN coatings due to grain refinement,less droplets and denser structure.With increasing the bias voltage to 150 V, the AlCrSiN coating presented higher hardness,adhesion strength as well as better wear resistance.
Key words:  multi-arc ion plating    bias voltage    AlCrSiN coating    mechanical property
                    发布日期:  2018-10-18
ZTFLH:  TG174.444  
基金资助: 国家重大研发专项(2016YFB0300403);广东省科技计划项目(2015B090923006;2017A070702016)
作者简介:  唐明:男,1993年生,硕士研究生,研究方向为材料表面工程 E-mail:scut_tangming@163.com 代明江:男,1964年生,博士,教授级高级工程师,硕士研究生导师,研究方向为材料表面工程 E-mail:daimingjiang@tsinghua.org.cn
引用本文:    
唐明, 代明江, 韦春贝, 邱万奇, 林松盛, 侯惠君, 李洪. 基体偏压对AlCrSiN涂层结构及力学性能的影响[J]. 材料导报, 2018, 32(18): 3099-3103.
TANG Ming, DAI Mingjiang, WEI Chunbei, QIU Wanqi, LIN Songsheng, HOU Huijun, LI Hong. Effects of Bias Voltage on Microstructure and Mechanical Property of AlCrSiN Coatings. Materials Reports, 2018, 32(18): 3099-3103.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.18.001  或          http://www.mater-rep.com/CN/Y2018/V32/I18/3099
1 Kalss W, Reiter A, Derflinger V, et al. Modern coatings in high performance cutting applications[J]. International Journal of Refractory Metals and Hard Materials,2006,24(5):399.
2 Inspektor A, Salvador P A. Architecture of PVD coatings for metalcutting applications: A review[J]. Surface and Coatings Technology,2014,257(257):138.
3 Zheng K P, Liu P, Li W, et al. Progress in research of AlCrN hard coating materials[J]. Materials Review A: Review Papers,2010,24(9):44(in Chinese).
郑康培,刘平,李伟,等.AlCrN硬质涂层材料的研究进展[J].材料导报:综述篇,2010,24(9):44.
4 Mo J L, Zhu M H. Sliding tribological behavior of AlCrN coating[J]. Tribology International,2008,41(12):1161.
5 Sanchéz J E, Sanchéz O M, Ipaz L, et al. Mechanical, tribological, and electrochemical behavior of Cr1-x AlxN coatings deposited by r.f. reactive magnetron co-sputtering method[J]. Applied Surface Science,2010,256(8):2380.
6 Reiter A E, Derflinger V H, Hanselmann B, et al. Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc eva-poration[J]. Surface and Coatings Technology,2005,200(7):2114.
7 Kawate M, Hashimoto A K, Suzuki T. Oxidation resistance of Cr1-x-AlxN and Ti1-xAlxN films[J]. Surface and Coatings Techno-logy,2003,165(2):163.
8 Forsén R, Johansson M P, Odén M, et al. Effects of Ti alloying of AlCrN coatings on thermal stability and oxidation resistance[J]. Thin Solid Films,2013,534(5):394.
9 Domínguez-Meister S, EscobaR-Galindo R, et al. Role of Y in the oxidation resistance of CrAlYN coatings[J]. Applied Surface Science,2015,353:504.
10 Liu C B, Pei W, et al. Improved mechanical and thermal properties of CrAlN coatings by Si solid solution[J]. Vacuum,2016,125:180.
11 Zhang S Z, Wang L, et al. A superhard CrAlSiN superlattice coating deposited by multi-arc ion plating: Ⅰ. Microstructure and mechanical properties[J]. Surface and Coatings Technology,2013,214(2):160.
12 Park I W, Dong S K, Moore J J, et al. Microstructures, mechanical properties, and tribological behaviors of Cr-Al-N, Cr-Si-N, and Cr-Al-Si-N coatings by a hybrid coating system[J]. Surface and Coa-tings Techno-logy,2007,201(9-11):5223.
13 Soldán J, NeidhardT J, Sartory B, et al. Structure-property relations of arc-evaporated Al-Cr-Si-N coatings[J]. Surface and Coatings Technology,2008,202(15):3555.
14 Chang C C, Chen H W, Lee J W, et al. Influence of Si contents on tribological characteristics of CrAlSiN nanocomposite coatings[J]. Thin Solid Films,2015,584:46.
15 Chen H W, Chan Y C, Lee J W, et al. Oxidation behavior of Si-doped nanocomposite CrAlSiN coatings[J]. Surface and Coatings Technology,2010,205(5):1189.
16 Polcar T, Cavaleiro A. High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings—Structure and oxidation[J]. Materials Chemistry & Physics,2011,129(1):195.
17 Ding Y S, Zhang J, Tian H H. Research on compositon demixing of protective coatings of supper alloy by arc ion plating[J]. Material Protection,1995,28(6):27(in Chinese).
丁育胜,张钧,田红花.多弧离子镀高温合金防护层成分离析的研究[J].材料保护,1995,28(6):27.
18 Zhang J. A study on the physical mechanism of demixing effect in alloys coatings deposited by multi-arc ion plating composition[J]. Journal of Vacuum Science and Technology,1996,16(3):174(in Chinese).
张钧.多弧离子镀合金涂层成分离析效应的物理机制研究[J].真空科学与技术,1996,16(3):174.
19 戴达煌,周克崧,袁镇海.现代材料表面技术科学[M].北京:冶金工业出版社,2004:475.
20 Gong C. Study of droplets and its effects on performance of TiN films prepared by arc ion plating[D]. Changsha: Central South University,2013(in Chinese).
龚才.电弧离子镀TiN薄膜表面液滴及其对薄膜性能的影响研究[D].长沙:中南大学,2013.
21 Chen Y, Du H, Chen M, et al. Structure and wear behavior of AlCrSiN-based coatings[J]. Applied Surface Science,2016,370:176.
22 Jönsson B, HogmarK S. Hardness measurements of thin films[J]. Thin Solid Films,1984,114(3):257.
23 中国国家标准化管理委员会.GB/T 4340.1-2009金属材料维氏硬度第1部分:试验方法[S].北京:中国标准出版社,2009:2.
24 Wan X S, Zhao S S, Yang Y, et al. Effects of nitrogen pressure and pulse bias voltage on the properties of Cr-N coatings deposited by arc ion plating[J]. Surface and Coatings Technology,2010,204(11):1800.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed