Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 21060121-12    https://doi.org/10.11896/cldb.21060121
  表面工程材料与技术 |
硬脆材料平面研抛的材料去除机理研究进展
刘宁, 朱永伟, 李学, 吴鹏飞
南京航空航天大学机电学院,江苏省精密与微细制造技术重点实验室,南京 210016
Research Progress of Material Removal Mechanism in Plane Lapping and Polishing of Hard-Brittle Materials
LIU Ning, ZHU Yongwei, LI Xue, WU Pengfei
Jiangsu Key Laboratory of Precision and Micro-manufacturing Technology,College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 7671KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硬脆材料具有膨胀系数低、强度高以及化学性质稳定等优点,被广泛应用于航空航天、光学器件和集成电路等重要领域。但其因高硬度、低韧性,在加工过程中极易发生脆性断裂,影响加工效率和表面质量。因此,实现硬脆材料的高效去除以获得低损伤的加工表面是当前硬脆材料加工面临的主要难题。
研磨抛光加工是实现硬脆材料表面平坦化的常用加工方式,可以在保证较高材料去除率的同时获得纳米级的表面粗糙度。研磨加工时,工件材料在磨粒的切削、耕犁、挤压及划擦作用下被去除,该方式作用下的材料去除率较高,但容易造成严重的亚表面损伤。因此在后续的抛光加工中,通常利用化学抛光液与工件材料之间的化学反应来进一步消除损伤,提升表面加工质量。
然而,研磨抛光工艺的加工系统复杂,影响因素众多,为了合理地调控加工工艺参数,需要对材料去除机理进行深入的研究。目前硬脆材料研磨抛光加工的材料去除机理大体可分为机械作用和化学-机械协同作用两个方面。其中机械作用下的材料去除形式表现为塑性域去除和脆性去除,化学-机械协同作用下的化学反应类型又可分为由摩擦作用引起的固相化学反应以及由化学抛光液导致的化学成键与断裂。
本文介绍了硬脆材料平面研抛的常用加工方法,从机械作用和化学-机械协同作用两个角度综述了硬脆材料平面研抛的材料去除机理,指出了现阶段研究中存在的问题并对未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘宁
朱永伟
李学
吴鹏飞
关键词:  硬脆材料  研磨  抛光  材料去除机理    
Abstract: Hard-brittle materials have low expansion coefficient, high strength and stable chemical properties, which are widely used in aerospace, optical devices, integrated circuits and other key industry fields. However, brittle fracture issue is easy to occur due to its high hardness and poor toughness, and it will severely affect processing efficiency and surface quality. Therefore, how to achieve the high material removal rate (MRR) and gain a low-damage machined surface is the main challenge for hard-brittle materials at present.
Lapping and polishing are the common processing methods to realize the surface flattening of hard-brittle materials, which can obtain the good MRR and nano-scale surface roughness. The workpiece is removed by cutting, ploughing, squeezing and scratching of abrasives during the lapping process, and this removal form is efficient but will cause the serious subsurface damage. Thus, the chemical reaction between slurry and workpiece materials is usually utilized in polishing process to further eliminate the damage and improve the surface quality.
Nevertheless, the machining systems of the lapping and polishing are complicated with many influencing factors. In order to regulate the processing parameters rationally, it is necessary to study the material removal mechanism deeply. Currently, the material removal mechanism of hard-brittle materials can be divided into two aspects, mechanical effect and chemical-mechanical synergistic operation. The mechanical effect can be classified as ductile removal and brittle removal, while the chemical-mechanical synergistic operation is manifested as solid-phase reactions and chemical bonding and fracture, which result from friction and slurry respectively.
This paper introduces several processing technologies for hard-brittle materials in plane lapping and polishing, and reviews the material removal mechanism from the perspective of mechanical and chemical-mechanical synergy effect. Finally, we focus on the problems confronting in the current investigation and prospect the research directions in the future.
Key words:  hard-brittle materials    lapping    polishing    material removal mechanism
发布日期:  2022-04-07
ZTFLH:  TG73  
  TG74  
基金资助: 国家自然科学基金联合基金(U20A20293)
通讯作者:  meeywzhu@nuaa.edu.cn   
作者简介:  刘宁,2016年于长江大学获得工学学士学位,2020年于昆明理工大学获得工学硕士学位。现为南京航空航天大学机电学院博士研究生,在朱永伟教授的指导下进行研究。目前主要研究方向为精密超精密加工。
朱永伟,1988年于中南大学获得学士学位,1991年于长沙矿冶研究院获得硕士学位,2002年于中南大学获得博士学位,现为南京航空航天大学机电学院教授、博士生导师。主要从事纳米材料的制备与应用、精密超精密加工、表面工程等方面的研究。
引用本文:    
刘宁, 朱永伟, 李学, 吴鹏飞. 硬脆材料平面研抛的材料去除机理研究进展[J]. 材料导报, 2022, 36(7): 21060121-12.
LIU Ning, ZHU Yongwei, LI Xue, WU Pengfei. Research Progress of Material Removal Mechanism in Plane Lapping and Polishing of Hard-Brittle Materials. Materials Reports, 2022, 36(7): 21060121-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060121  或          http://www.mater-rep.com/CN/Y2022/V36/I7/21060121
1 Abdallah A, Masahiko Y, Yuki N. International Journal of Automation Technology, 2020, 14(2), 253.
2 Wang W, Wan Z P, Yang S, et al. Materials, 2020, 13(8), 1842.
3 Huang P, Wu X Y, To S, et al. International Journal of Machine Tools and Manufacture, 2020, 154, 103556.
4 Zhang J J, Han L, Zhang J G, et al. The International Journal of Advanced Manufacturing Technology, 2019, 104(1), 881.
5 Wang Z K, Niu F L, Wang Z K, et al. Wear, 2021, 470, 203598.
6 Xia Z B, Fang F Z, Ahearne E, et al. Journal of Materials Processing Technology, 2020, 286, 116828.
7 Jin Y, Cheng J.The International Journal of Advanced Manufacturing Technology, 2017, 91(9), 3953.
8 Li Z P, Zhang F H, Luo X C, et al. Micromachines, 2018, 9(8), 368.
9 Zhang Z J, Zhang M Q, Cao X P, et al. Materials Reports A:Review Papers, 2012, 26(6),12(in Chinese).
张志金, 张明岐, 曹新鹏, 等. 材料导报:综述篇, 2012, 26(6),12.
10 Hu Y, Shi D, Hu Y, et al. Journal of Manufacturing Processes, 2019, 44, 299.
11 Liu N, Yang X J, Yu Z, et al. Transactions of Nonferrous Metals Society of China, 2020, 30(1), 181.
12 Hu Y X, Deng Z H, Wan L L, et al. Materials Reports A:Review Papers, 2018, 32(5), 1452(in Chinese).
胡扬轩, 邓朝晖, 万林林, 等. 材料导报:综述篇, 2018, 32(5),1452.
13 Yuan J L, Wu Z, Lu B H.Journal of Mechanical Engineering, 2012, 48(23), 168.
14 Li J, Zhu Y W, Zuo D W, et al. Key Engineering Materials, 2010,873, 589.
15 Li J, Gao P, Zhu Y W, et al. Key Engineering Materials, 2011, 1371, 253.
16 Kim H M, Park G H, Seo Y G, et al. Wear, 2015, 332, 794.
17 Wang J B, Li Z, Zhu Y W, et al. Key Engineering Materials, 2018, 4493, 106.
18 Xu Y C, Lu J, Xu X P.Catalysts, 2019, 9(7), 594.
19 Zhao Y, Zuo D W, Sun Y L. Key Engineering Materials, 2012, 1596, 390.
20 Tang S Y, Sun Y L, Wang Y, et al. Transactions of Nanjing University of Aeronautics and Astronautics. 2017, 34 (5), 496.
21 Zhao Y, Zuo D W, Sun Y L, et al. The International Journal of Advanced Manufacturing Technology, 2016, 85(5), 1045.
22 Tang H Y, Yang W, Liu W J, et al. Optik, 2020, 202, 163623.
23 Lin B, Jiang X M, Li S P, et al. Journal of Manufacturing Processes, 2019, 46, 279.
24 Huang S Q, Li X L, Yu B W, et al. Journal of Materials Processing Technology, 2020, 277, 116444.
25 Werrell J M, Mandal S, Thomas E L H, et al. Science and Technology of Advanced Materials, 2017, 18(1), 654.
26 Mandal S, Thomas E L H, Gines L, et al. Carbon, 2018, 130, 25.
27 Kubota A, Nagae S, Motoyama S.Diamond and Related Materials, 2020, 101, 107644.
28 Kondo S, Sakuma N, Homma Y, et al. Journal of the Electrochemical Society, 2000, 147(10), 3907.
29 Gagliardi J J. In: The Proceeding of 16th International VLSI Multilevel Interconnecttion Conf. Santa Clara, 1999, pp. 223.
30 Vo T, Buley T, Gagliardi J I.Solid State Technology, 2000, 43(6), 123.
31 Ikeno J, Tani Y, Sato H. CIRP Annals, 1990, 39(1), 341.
32 Yuan J L, Zhang T J, Hang W, et al. Surface Technology, 2019, 48(10), 349(in Chinese).
袁巨龙, 张韬杰, 杭伟, 等. 表面技术, 2019, 48(10), 349.
33 Lin B, Jiang X M, Cao Z C, et al. Journal of Materials Processing Technology, 2020, 279, 116570.
34 Ling S Z. Effect of abrasive sizes on processing performance of fixed aggregate diamond abrasive pad. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2018(in Chinese).
凌顺志. 磨粒尺寸对固结聚集体磨料垫研磨加工性能的影响. 硕士学位论文, 南京航空航天大学, 2018.
35 Luo H, Ajmal K M, Liu W, et al. International Journal of Extreme Manufacturing, 2021, 3(2), 022003.
36 Dyment J C, Rozgonyi G A. Journal of the Electrochemical Society, 1971, 118(8), 1346.
37 Yao Y Z, Ishikawa Y, Sugawara Y, et al. Materials Science Forum, 2015, 821, 541.
38 Hitchiner M P, Wilks E M, Wilks J.Wear, 1984, 94(1), 103.
39 Yuan S, Guo X G, Jin Z J, et al. Surface Technology, 2020, 49(4), 11(in Chinese).
袁菘, 郭晓光, 金洙吉, 等. 表面技术, 2020, 49(4), 11.
40 Qiu Z J, Zhou L B, Fang F Z, et al. Optics and Precision Engineering, 2010,18(7), 1554(in Chinese).
仇中军, 周立波, 房丰洲, 等. 光学精密工程, 2010, 18(7), 1554.
41 Li J J. Study on friction chemical mechanical lapping of SiC single crystal substrate with fixed abrasives. Master's Thesis, Henan Institute of Science and Technology, China, 2019(in Chinese).
李洁静. SiC单晶基片固结磨粒摩擦化学机械研磨研究. 硕士学位论文, 河南科技学院, 2019.
42 Iwai M, Uematsu T, Suzuki K, et al. Proceedings of ISAAT, 2001, 231.
43 Chen Y, Zhang L C, Arsecularatne J A, et al. International Journal of Machine Tools and Manufacture, 2006, 46(6), 580.
44 Yuan Z W, Jin Z J, Kang R K, et al. Diamond and Related Materials, 2012, 21, 50.
45 Deng J Y, Pan J S, Zhang Q X, et al. Diamond and Abrasives Enginee-ring. 2020, 40(1), 79(in Chinese).
邓家云, 潘继生, 张棋翔, 等. 金刚石与磨料磨具工程, 2020, 40(1), 79.
46 Li C, Zhang F H, Zhang X, et al. Chinese Journal of Mechanical Engineering, 2019, 55(3),181(in Chinese).
李琛, 张飞虎, 张宣, 等. 机械工程学报, 2019, 55(3), 181.
47 Zhao F F, Lin B, He Y P, et al. Ceramics International, 2021, 47(7), 9317.
48 Bifano T G, Dow T A, Scattergood R O.Journal of Engineering for Industry, 1991, 113(2), 184.
49 Ast J, Schwiedrzik J J, Wehrs J, et al. Materials & Design, 2018, 152, 168.
50 Geng R W, Yang X J, Xie Q M, et al. Rare Metal Materials and Engineering, 2019, 48(8), 2544(in Chinese).
耿瑞文, 杨晓京, 谢启明, 等. 稀有金属材料与工程, 2019, 48(8), 2544.
51 Chai P, Li S J, Li Y.Micromachines, 2019, 10(6), 382.
52 Alreja C, Subbiah S.Journal of Micro and Nano-Manufacturing, 2019, 7(2), 024505.
53 Yang X J, Liu H, Luo L, et al. The Chinese Journal of Nonferrous Metals, 2019, 29(7),1457(in Chinese).
杨晓京, 刘浩, 罗良, 等. 中国有色金属学报, 2019, 29(7), 1457.
54 Yu Z, Yang X J, Zhao L, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(12), 2930(in Chinese).
余证, 杨晓京, 赵垒, 等. 中国有色金属学报, 2020, 30(12), 2930.
55 Li W, Li Z P, Yang J, et al. Precision Engineering, 2021, 71, 103.
56 Liu Y Y, Deng J X, Yue H Z, et al. Ceramics International, 2019, 45(9), 12495.
57 Li C, Zhang F H, Piao Y C.Ceramics International, 2019, 45(12), 15015.
58 Zhang C, Zhu H T, Jiang Z L, et al. Materials Science in Semiconductor Processing, 2020, 105,104746.
59 Qian Y, Deng S Z, Shang F L, et al. Journal of Applied Physics, 2019, 126(7), 075108.
60 Wang Y Q, Tang S, Guo J. Applied Surface Science, 2020, 510, 145492.
61 Zhou P, Zhu Y W, Sun T, et al. Materials Science in Semiconductor Processing, 2020, 112, 104893.
62 Zhou P, Li J, Wang Z K, et al. Ceramics International, 2020, 46(16), 24961.
63 Lin J M, Jiang F, Wen Q L, et al. Applied Surface Science, 2021, 546, 149091.
64 Panzarino J F, Pan Z, Rupert T J.Acta Materialia, 2016, 120, 1.
65 Zhao Y J, Toth L S, Massion R, et al. Advanced Engineering Materials, 2018, 20(4), 1700212.
66 Wang L H, Teng J, Liu P, et al. Nature Communications,2014,5(1),1.
67 Wang L H, Xin T J, Kong D L, et al. Scripta Materialia, 2017, 134, 95.
68 Li C, Zhang F H, Wu Y Q, et al. Ceramics International, 2018, 44(17), 21486.
69 Fan J J, Li J, Huang Z W, et al. Computational Materials Science, 2018, 144, 113.
70 Li C, Li X L, Wu Y Q, et al. International Journal of Machine Tools and Manufacture, 2019, 143, 23.
71 Wan Z P, Tang Y.The International Journal of Advanced Manufacturing Technology, 2009, 43(11-12), 1051.
72 Wan Z P, Wang W, Feng J Y, et al. Ceramics International, 2020, 46(10), 16754.
73 Ma Y M, Li S, Yang X J, et al. Ordnance Material Science and Engineering, 2020, 43(4), 50(in Chinese).
马一鸣, 李珊, 杨晓京, 等. 兵器材料科学与工程,2020,43(4),50.
74 Guo X G, Shi Y T, Luo X C, et al. International Journal of Precision Engineering and Manufacturing, 2019, 20(5), 815.
75 Wang J B, Ma R, Jiang B C, et al. Surface Technology, 2020, 49(6), 345(in Chinese).
王建彬, 马睿, 江本赤, 等. 表面技术, 2020, 49(6), 345.
76 Zhao L, Zhang J J, Pfetzing J, et al. Materials & Design, 2021, 197, 109223.
77 Wang N C, Jiang F, Xu X P, et al. Crystals, 2018, 8(1), 3.
78 Gu X S, Zhao Q L, Guo B. Journal of Physics Conference Series, 2020, 1605,012015.
79 Preston F W.Journal of Glass Technology, 1927, 11(44), 214.
80 Zhao B, Shi F G.Electrochemical and Solid State Letters, 1998, 2(3), 145.
81 Seok J, Sukam C P, Kim A T, et al. Wear, 2003, 254(3-4), 307.
82 Chekina O G, Keer L M, Liang H. Journal of the Electrochemical Society, 1998, 145(6), 2100.
83 Lin T R.The International Journal of Advanced Manufacturing Technology, 2007, 32(7-8), 675.
84 Cook L M.Journal of Non-crystalline Solids, 1990, 120(1-3), 152.
85 Wang J. Study on high efficiency lapping of sapphire wafer based on solid phase tribo-chemical reaction. Ph.D. Thesis, Zhejiang University of Technology, China, 2020(in Chinese).
王洁. 基于固相摩擦化学反应的蓝宝石晶片高效研磨基础研究. 博士学位论文, 浙江工业大学, 2020.
86 Su J X, Xu R, Wang Y P, et al. Journal of the Institution of Engineers (India), Series E, 2020, 101, 141.
87 Kubota A, Iwakiri A.Precision Engineering, 2019, 56, 69.
88 Jin Z J, Shi S J, Lin J Z, et al. Materials and Manufacturing Processes, 2014, 29(1), 20.
89 Zheng Y T, Ye H T, Thornton R, et al. Diamond and Related Materials, 2020, 101, 107600.
90 Xu H Q, Zang J B, Yang G P, et al. Diamond and Related Materials, 2018, 84, 119.
91 Xu H Q, Zang J B, Tian P F, et al. Ceramics International, 2018, 44(17), 21641.
92 Jin T Y, Ma M D, Li B Z, et al. Carbon, 2020, 161, 1.
93 Xu J H, Kang R K, Dong Z G, et al. Diamond and Abrasives Enginee-ring, 2020,40(4), 24(in Chinese).
徐嘉慧, 康仁科, 董志刚, 等. 金刚石与磨料磨具工程, 2020, 40(4), 24.
94 Chen G P, Luo H M, Kang C X, et al. Surface and Interface Analysis, 2019, 51(5), 576.
95 Zhang Z Y, Liu J, Hu W, et al. Journal of Manufacturing Processes, 2021, 62, 762.
96 Yin T, Doi T, Kurokawa S, et al. International Journal of Precision Engineering and Manufacturing, 2018, 19(12), 1773.
97 Wang Z K, Pang M H, Liang M C, et al. Science Progress, 2020, 103(4), 0036850420982451.
98 Duin A, Dasgupta S, Lorant F, et al. The Journal of Physical Chemistry A, 2001, 105(41), 9396.
99 Onodera T, Morita Y, Suzuki A, et al. The Journal of Physical Chemistry B, 2009, 113(52), 16526.
100 Kuwahara T, Moras G, Moseler M.Physical Review Materials, 2018, 2(7), 073606.
101 Yuan S, Guo X G, Huang J X, et al. Tribology International, 2020, 148, 106308.
102 Yuan S, Guo X G, Huang J X, et al. Diamond and Related Materials, 2019, 100, 107528.
103 Wen J L, Ma T B, Zhang W W, et al. Applied Surface Science, 2016, 390, 216.
104 Onodera T, Takahashi H, Nomura S.Applied Surface Science, 2020, 530, 147259.
[1] 肖强, 王嘉琪, 靳龙平. 磁流变抛光关键技术及工艺研究进展[J]. 材料导报, 2022, 36(7): 20080279-10.
[2] 胡连军, 刘建军, 潘国峰, 曹静伟, 夏荣阳. 钴化学机械抛光的研究进展[J]. 材料导报, 2022, 36(4): 20090178-10.
[3] 段鹏, 彭燕, 王希玮, 韩晓桐, 王笃福, 胡小波, 徐现刚. 用于MPCVD金刚石薄膜生长的高表面质量HTHP金刚石的制备[J]. 材料导报, 2021, 35(4): 4034-4037.
[4] 张莲芝, 吴张永, 王庭有, 朱启晨, 蔡晓明, 莫子勇. 纳米氧化锆多层吸附的模拟及实验研究[J]. 材料导报, 2021, 35(18): 18040-18046.
[5] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[6] 余登德, 张仁耀, 沈月, 闻明, 刘洪喜1,. 混合表面纳米化制备钛表面Ru/Ti薄膜的结构及耐蚀性能[J]. 材料导报, 2020, 34(24): 24086-24091.
[7] 曾德鹏, 余森, 王岚, 于振涛, 刘印, 盖晋阳, 代晓军. 医用金属材料表面自身纳米化研究进展[J]. 材料导报, 2019, 33(Z2): 343-347.
[8] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[9] 胡扬轩,邓朝晖,万林林,李 敏. 用于蓝宝石材料加工的新型超精密抛光技术及复合抛光技术研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1452-1458.
[10] 杨赞中, 王涵, 王永在, 刘敏, 丁琪, 李成峰, 乐红志, 魏春城. 抛光砖废渣复合发泡法制备闭孔泡沫陶瓷*[J]. 《材料导报》期刊社, 2017, 31(20): 119-123.
[11] 王毅, 王盼, 索红莉, 贾强, 卢东琪, 李怀洲, 吴海明. 哈氏合金电化学抛光工艺的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 37-40.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed