Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 21060140-6    https://doi.org/10.11896/cldb.21060140
  表面工程材料与技术 |
基于有限元法冶金冷轧辊表面替代电镀铬涂层的设计与研究
孙伟1, 张淑婷1, 杜开平2, 欧阳佩旋1, 杨谨赫1
1 北方工业大学机械与材料工程学院,北京 100144
2 矿冶科技集团有限公司,北京 100160
Design and Research of Substituting Electroplating Chromium Coating on Metallurgical Cold Roll Surface Based on Finite Element Method
SUN Wei1, ZHANG Shuting1, DU Kaiping2, OUYANG Peixuan1, YANG Jinhe1
1 School of Mechanical and Material Engineering, North University of Technology, Beijing 100144, China
2 Mining and Metallurgy Technology Group Co., Ltd., Beijing 100160, China
下载:  全 文 ( PDF ) ( 4138KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在冷轧过程中,轧辊表面镀层的应力分布是影响镀层服役性能和使用寿命的重要因素。本工作基于冷轧工况,利用有限元仿真软件ABAQUS建立了轧辊和板材的三维有限元模型,针对冶金轧辊用复合电镀涂层,结合弹塑性变形等相关理论,系统研究了镀层的厚度、弹性模量及摩擦系数对轧辊-镀层界面应力分布及大小的影响。研究结果表明:镀层厚度在20~80 μm时,随着镀层厚度的增大,轧辊-镀层界面峰值应力逐渐减小,当镀层厚度大于60 μm时界面峰值应力又略有增加,镀层磨损量显著降低,网格破损现象得到明显改善;镀层弹性模量在200~600 GPa时,随着镀层弹性模量的增大,轧辊-镀层界面峰值应力先增大后减小,600 GPa时的界面峰值应力最小;镀层摩擦系数对轧辊-镀层界面峰值应力的影响不大,是次要影响因素。综合考虑轧辊表面镀层的性能需求,依据界面峰值应力与镀层结合状态的关系可知,镀层厚度以40~60 μm为宜,弹性模量以400~600 GPa为宜。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙伟
张淑婷
杜开平
欧阳佩旋
杨谨赫
关键词:  冷轧辊  复合电镀涂层  有限元法  涂层性能  界面应力    
Abstract: In the process of cold rolling, stress distribution of composite electroplating coating on the roll is an important factor that affects the service performance and life of the coating. In this work, the three-dimensional finite element model consisting of a cold roll and a steel plate was established by using the finite element simulation software ABAQUS based on the cold rolling condition. The effects of thickness, elastic modulus and friction coefficient of the coating on the distribution and magnitude of the peak stress at the roll-coating interface were systematically studied based on the theory of elastic-plastic deformation. The results show that with the increase of the coating thickness in the range of 20—80 μm, the peak stress at the interface first decreases gradually and slightly increases when the thickness exceeds 60 μm, with wear of the coating significantly decreasing and the grid damage obviously improved. With the increase of the elastic modulus of the coating in the range of 200—600 GPa, the peak stress of the roll-coating interface increases first and then decreases, which is the lowest at the elastic modulus of 600 GPa. The friction coefficient of the coating has little effect on the peak stress of the roll-coating interface, which is the secondary factor. Considering the performance requirements of the coating on the roll and according to the relationship between the peak stress of the interface and the bonding state of the coa-ting, it can be seen that the suitable thickness of the coating is 40—60 μm and the optimum elastic modulus is 400—600 GPa.
Key words:  cold rolling    composite electroplating coating    finite element method    coating property    interfacial stress
发布日期:  2022-04-07
ZTFLH:  TG174.441  
基金资助: 国家重点研发计划(2018YFB2002000);北京市基金-市教委联合资助项目(KZ201910009010);北方工业大学高层次人才科研启动项目(XN277;110051360002);毓杰团队项目(XN212/009)
通讯作者:  zhangst@ncut.edu.cn   
作者简介:  孙伟,2019年9月至今于北方工业大学机械与材料工程学院攻读硕士学位,目前主要研究方向为表面工程。
张淑婷,北方工业大学机械与材料工程学院教授,硕士研究生导师。2006年毕业于东北大学,获有色金属冶金博士学位。主要从事高品质金属及合金粉末成分设计计算,航空、舰船发动机高温热端部件表面功能化工艺及失效机理研究,合金材料3D打印技术研究等工作,材料应用领域包括航空、舰船、电力、冶金等。近五年,负责及参加的国家项目近30项,其中包括“国家自然科学基金”、“国家重点研发计划”、“863”等,已完成的项目获省部级奖励共17项。在国家及省部级以上核心期刊发表论文多篇,申请国家发明专利近20项。
引用本文:    
孙伟, 张淑婷, 杜开平, 欧阳佩旋, 杨谨赫. 基于有限元法冶金冷轧辊表面替代电镀铬涂层的设计与研究[J]. 材料导报, 2022, 36(7): 21060140-6.
SUN Wei, ZHANG Shuting, DU Kaiping, OUYANG Peixuan, YANG Jinhe. Design and Research of Substituting Electroplating Chromium Coating on Metallurgical Cold Roll Surface Based on Finite Element Method. Materials Reports, 2022, 36(7): 21060140-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060140  或          http://www.mater-rep.com/CN/Y2022/V36/I7/21060140
1 Bai W Z, Wei S Z, Long R, et al.Foundry Technology, 2006, 27(9), 1010(in Chinese).
白万真, 魏世忠, 龙锐, 等.铸造技术, 2006, 27(9), 1010.
2 Liu H M, Zheng Z Z, Peng Y.International Journal for Numerical Met-hods in Engineering, 2001, 50(5), 1059.
3 Kusakin P, Belyakov A, Haase C, et al.Materials Science and Enginee-ring, A: Structural Materials: Properties, Misrostructure and Processing, 2014, 617, 52.
4 Jiang J J. Experimental study on fracture toughness of cold roll material. Master's Thesis, Shanghai Jiao Tong University, China, 2013(in Chinese).
姜晶晶. 冷轧辊材料断裂韧性试验研究. 硕士学位论文, 上海交通大学, 2013.
5 Lanzutti A, Bearzi D, Magnan M, et al.Engineering Failure Analysis, 2020, 116, 104755.
6 Li H C, Jiang Z Y, Tieu K A, et al.Wear, 2007, 263(7-12), 1442.
7 Ortiz-Mancilla M J, Mariño-Berroterán C, Berríos-Ortiz J A, et al.Surface Engineering, 2004, 20, 345.
8 Huang J L, Wang Q W, Yang Y F, et al.Surface Technology, 2021, 50(1), 130(in Chinese).
黄嘉乐, 王启伟, 阳颍飞, 等.表面技术, 2021, 50(1), 130.
9 Wang H X, Tan S Y, Liu B Y, et al.Journal of Materials Engineering, 2015, 43(10), 60(in Chinese).
王红星, 谈淑咏, 柳秉毅, 等.材料工程, 2015, 43(10), 60.
10 Afshar A, Ghorbani M, Mazaheri M.Surface and Coatings Technology, 2004, 187(2), 293.
11 Xiao C J.Surface Engineering, 2017, 34, 832.
12 Bates B L, Zhang L Z, Zhang Y.Surface Engineering, 2015, 31, 202.
13 Li X H, Di Y L, Wang H D, et al.Materials Reports A:Review Papers, 2019, 33(5), 1500(in Chinese).
李雪换, 底月兰, 王海斗, 等.材料导报:综述篇, 2019, 33(5), 1500.
14 Yin S, Liao H L, Wang X F.Surface Engineering, 2014, 30, 309.
15 Bharadwaj R, Prasad M J N V, Sam S, et al.Transactions of the Indian Institute of Metals, 2020, 73(11), 2919.
16 Deeparekha N, Gupta A, Demiral M, et al.Mechanics of Materials, 2020, 148, 103420.
17 Orlov G A, Orlov A G.Metallurgist, 2019, 62(9-10), 857.
18 Heidari A, Forouzan M R, Niroomand M R.The International Journal of Advanced Manufacturing Technology, 2018, 96(5-8), 2055.
19 Li L Y, Li X, Liu J, et al.International Journal of Advanced Manufactu-ring Technology, 2013, 69(5-8), 1717.
20 Hu M, Dong L M, Zhang Z Q, et al.Rare Metal Materials and Enginee-ring, 2020, 49(3), 956(in Chinese).
胡明, 董利民, 张志强, 等.稀有金属材料与工程, 2020, 49(3), 956.
21 Shi X. Elastic-plastic FEM simulation on thin strip cold rolling process. Ph.D. Thesis, Northeastern University, China, 2005(in Chinese).
时旭. 薄带钢冷轧过程的弹塑性有限元模拟. 博士学位论文, 东北大学, 2005.
22 Jiang Z Y, Tieu A K.Tribology International, 2004, 6(37), 185.
23 Tieu A K.Wear, 2007, 263(7), 1447.
24 Li Y, Ma L F, Jiang Z Y, et al.Rare Metal Materials and Engineering, 2019, 48(7), 2185(in Chinese).
李洋, 马立峰, 姜正义, 等.稀有金属材料与工程, 2019, 48(7), 2185.
25 Guo S J, Hu Z Y, Fan B, et al.Modular Machine Tool and Automatic Manufacturing Technique, 2013(9), 55(in Chinese).
郭世杰, 胡志勇, 范斌, 等.组合机床与自动化加工技术, 2013(9), 55.
26 Li J C, Feng R, Huang X T.Journal of Lanzhou University of Technology, 2019, 45(3), 11(in Chinese).
李俊琛, 冯瑞, 黄旭涛.兰州理工大学学报, 2019, 45(3), 11.
27 Chen L, Fang Q, Huan Y, et al.Journal of Beijing University of Techno-logy, 2008, 34(6), 580(in Chinese).
陈力, 方秦, 还毅, 等.北京工业大学学报, 2008, 34(6), 580.
28 Liu C Q. Numerical simulation on the blasting demolition of cooling tower based on CONWEP. Master's Thesis, Beijing Institute of Technology, China, 2017(in Chinese).
刘传奇. 基于CONWEP加载的冷却塔爆破拆除数值模拟. 硕士学位论文, 北京理工大学, 2017.
29 Yan J J. Wear resistance analysis of TC4 titanium alloy matrix SiC coa-ting. Master's Thesis, Jilin University, China, 2019(in Chinese).
闫俊杰. TC4钛合金基体SiC涂层抗磨损性能分析. 硕士学位论文, 吉林大学, 2019.
30 Wang D. The research on simulation of composite cold rolling plate of stainless steel. Master's Thesis, Yanshan University, China, 2011(in Chinese).
王丹. 不锈钢复合板冷轧模拟研究. 硕士学位论文, 燕山大学, 2011.
31 Lekka M, Lanzutti A, Casagrande A, et al.Surface and Coatings Technology, 2012, 206(17), 3658.
32 Nagayama T, Yamamoto T, Nakamura T, et al.Surface and Coatings Technology, 2017, 322, 70.
33 Xie H, Chen D, Huang J M.Surface Technology, 2014, 43(2), 1(in Chinese).
谢华, 陈东, 黄健萌.表面技术, 2014, 43(2), 1.
[1] 韩冰源, 徐文文, 朱胜, 黄庆伟, 雷卫宁, 杭卫星, 杜伟. 面向等离子喷涂涂层质量调控的工艺优化方法研究现状[J]. 材料导报, 2021, 35(21): 21105-21112.
[2] 王力, 王海斗, 底月兰, 赵运才, 董丽虹, 李帅. 热障涂层应力产生机制及分布特征[J]. 材料导报, 2021, 35(17): 17143-17149.
[3] 方振兴, 祁文军, 李志勤. 304不锈钢激光熔覆搭接率对CoCrW涂层组织与耐磨及耐腐蚀性能的影响[J]. 材料导报, 2021, 35(12): 12123-12129.
[4] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[5] 李昌, 高敬翔, 张大成, 于志斌, 韩兴. 基于PFM-FEM的多变体马氏体转变过程模拟及模型参数灵敏度分析[J]. 材料导报, 2019, 33(20): 3477-3488.
[6] 李荣涛, Christopher Y. TUAN. 考虑热湿影响的氯盐侵蚀下混凝土中多相传输与相变模拟[J]. 材料导报, 2019, 33(18): 3043-3049.
[7] 温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed