Please wait a minute...
材料导报  2019, Vol. 33 Issue (20): 3477-3488    https://doi.org/10.11896/cldb.18100182
  金属及金属基复合材料 |
基于PFM-FEM的多变体马氏体转变过程模拟及模型参数灵敏度分析
李昌, 高敬翔, 张大成, 于志斌, 韩兴
辽宁科技大学机械工程与自动化学院,鞍山 114051
PFM-FEM Based Simulation of Multi-Variant Martensitic Transformation Process and Sensitivity Analysis of Model Parameters
LI Chang, GAO Jingxiang, ZHANG Dacheng, YU Zhibin, HAN Xing
School of Mechanical Engineering and Automation, University of Science and Technology Liaoning, Anshan 114051
下载:  全 文 ( PDF ) ( 7912KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 准确获取马氏体转变过程的微观表象特征是获取材料最佳性能的关键,在材料设计领域具有重要意义。马氏体转变过程受到多种参数的影响,定量分析各参数对马氏体转变影响的敏感程度是准确把握马氏体转变机理的关键。本研究采用相场方法,推导了马氏体由亚稳态向稳态转变的相场方程,采用有限元法对方程进行求解,并将求解结果可视化,分析得到马氏体形核、生长过程中不同位置的序参量变化曲线,揭示了马氏体转变过程的形核长大规律与动态变化特性,在此基础上设计了正交试验表,基于响应面法定量评估了不同参数对马氏体转变的影响与敏感程度。该研究有效解释和确定了马氏体转变规律,实现了对马氏体转变过程的定量评估,为确定马氏体转变规律、获取最优过程参数提供了有效途径,也为提高材料的力学性能奠定了重要的理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李昌
高敬翔
张大成
于志斌
韩兴
关键词:  相场法  有限元法  马氏体转变  正交试验  参数灵敏度    
Abstract: It is generally recognized that accurate acquisition of the microscopic representation of the martensite transformation process is crucial for obtaining the best performance of the material and exceedingly significant in the field of material design. There are multiple parameters that exert influence on the transformation process of martensite. Accordingly, the key to precisely grasp the transformation mechanism of martensite lies in the quantitative analysis of the sensitivity of each parameter to the influence of martensite transformation. In this work, we employed phase field method to deduce the phase field equation of martensite transformation from metastable to steady state. Then, the solutions of the equation were figured out by finite element method, and the solution results were visualized as well. The variation curve of order parameter at various positions during martensite nucleation and growth were obtained, which revealed the nucleation growth law and dynamic variation characteristics of martensite transformation. On this basis, we designed an orthogonal test and quantitatively evaluated the impact and sensitivity degree of diverse parameters on martensitic transformation by response surface method. This study effectively expounded and determined the martensite transformation law and realized the quantitative evaluation of the martensite transformation process. It also provides a valuable approach to determine the law of martensite transformation and acquire the optimal process parameters, paving the way for improving the mechanical properties of materials.
Key words:  phase-field method    finite element method    martensitic transformation    orthogonal test    parameter sensitivity
               出版日期:  2019-10-25      发布日期:  2019-08-29
ZTFLH:  TG111.5  
基金资助: 国家自然科学基金(E050402;51105187);辽宁省教育厅项目(2017FWDF01);公安部消防重点实验室开放课题(KF201704);辽 宁科技大学创新团队建设项目(601009830-02);辽宁省自然科学基金(KD201918)
作者简介:  李昌,辽宁科技大学机械工程与自动化学院副教授、硕士研究生导师。2009年1月毕业于东北大学机械工程与自动化学院,获得机械设计及理论专业博士学位。主要从事机械可靠性工程/现代传动及数字化设计/航空齿轮传动系统、滚动轴承使役损伤机理可靠性分析与动态优化/焊接可靠性与金属大塑变微观表征可靠性试验方法/并、串联机器人机构运动精度可靠性分析/激光熔覆、激光淬火、激光清洗、超音速喷涂、火焰喷涂喷焊、堆焊等金属表面先进制造技术研究。入选辽宁省“百千万人才工程”千层次人选,入选辽宁省高等学校优秀人才支持计划。在国内外重要期刊发表文章52篇,其中SCI/EI检索39篇,获批发明专利8项,实用新型专利15项,软件著作权2项,出版学术专著1部。lichang2323-23@163.com
引用本文:    
李昌, 高敬翔, 张大成, 于志斌, 韩兴. 基于PFM-FEM的多变体马氏体转变过程模拟及模型参数灵敏度分析[J]. 材料导报, 2019, 33(20): 3477-3488.
LI Chang, GAO Jingxiang, ZHANG Dacheng, YU Zhibin, HAN Xing. PFM-FEM Based Simulation of Multi-Variant Martensitic Transformation Process and Sensitivity Analysis of Model Parameters. Materials Reports, 2019, 33(20): 3477-3488.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18100182  或          http://www.mater-rep.com/CN/Y2019/V33/I20/3477
1 Mamivand M, Zaeem M A, El Kadiri H. Computational Materials Scie-nce,2013,77,304.2 Askeland D R, Wright W J. Essentials of materials science & engineering,Cengage Learning, USA,2013.3 Xu Z Y. Martensitic transformation and martensite, Second Edition, Science Press, China,1999(in Chinese).徐祖耀. 马氏体相变与马氏体, 第2版,科学出版社,1999.4 Kurdjumov G V J J. Materials Science & Engineering, 1959, 11(7), 449.5 Jani J M, Leary M, Subic A, et al. Materials & Design, 2014, 56,1078.6 Patoor E, Lagoudas D C, Entchev P B, et al. Mechanics of Materials, 2006, 38(5-6),391.7 Casciati F, Faravelli L, Fuggini C. Acta Mechanica, 2008,195(1-4),141.8 Barbarino S, Flores E I S, Ajaj R M, et al. Smart Materials and Structures, 2014, 23(6), 063001..9 Dong J, Cai C S, Okeil A M. Journal of Bridge Engineering,2011,16(2),305.10 Elahinia M H, Hashemi M, Tabesh M, et al. Progress in Materials Scie-nce, 2012, 57(5), 911.11 Olson G B, Hartman H. Le Journal de Physique Colloques,1982, 43(C4), C4-855.12 Lagoudas D C. Shape memory alloys: modeling and engineering applications, Springer, USA, 2008.13 Johnson W A, Mehl R F. Transactions of the American Institute of Mining and Metallurgical Engineers, 1939, 135, 416.14 Koistinen D P, Marburger R E. Acta Metallurgica, 1959,7, 59.15 Greenwood G W, Johnson R H. Proceedings of the Royal Society of London, 1965, 283(1394), 403.16 Denis S, Gautier E, Simon A, et al. Metal Science Journal, 1985, 1(10), 805.17 Kobayashi R. Physica D: Nonlinear Phenomena, 1993, 63(3-4), 410.18 Wang Y, Khachaturyan A G. Acta Materialia, 1997, 45(2), 759.19 Kundin J, Emmerich H, Zimmer J. Philosophical Magazine, 2010, 90(11), 1495.20 She H, Liu Y, Wang B. International Journal of Solids and Structures, 2013, 50(7-8), 1187.21 Tuma K, Stupkiewicz S, Petryk H. Journal of the Mechanics and Physics of Solids, 2018, 114, 117.22 Ginzburg V L, Landau L D. ZhETF, 1950, 20, 1064.23 Cahn J W, Hilliard J E. The Journal of Chemical Physics, 1958, 28(2), 258.24 Man J, Zhang J, Rong Y. Acta Metallurgica Sinica, 2010, 46(7), 775.25 Lifshitz E M, Pitaevskii L P. Statistical physics, 3rd edition, Part I, Landau and Lifshitz Course of Theoretical Physics, Pergamon Press, UK, 1980.26 Schmitt R, Mueller R, Kuhn C, et al. Archive of Applied Mechanics, 2013, 83(6), 849.27 Pimpinelli A, Villain J. Physics of crystal growth, Cambridge University Press, UK, 1998.
[1] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[2] 巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
[3] 贾森森, 王永彪, 肖艳秋, 吴玉娟, 彭立明, 刘建秀, 刘新田. 镁合金微观组织的相场法模拟进展[J]. 材料导报, 2019, 33(19): 3306-3312.
[4] 李荣涛, Christopher Y. TUAN. 考虑热湿影响的氯盐侵蚀下混凝土中多相传输与相变模拟[J]. 材料导报, 2019, 33(18): 3043-3049.
[5] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[6] 董越, 杨志强, 高谦. 正交试验协同BP神经网络模型预测充填体强度[J]. 材料导报, 2018, 32(6): 1032-1036.
[7] 闫存富, 李淑娟. 陶瓷材料低温挤压自由成形工艺液相迁移研究[J]. 《材料导报》期刊社, 2018, 32(4): 636-640.
[8] 温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
[9] 闫志龙, 李永胜, 胡凯, 周晓荣. 双相不锈钢相分解研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 75-80.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed