Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22050150-6    https://doi.org/10.11896/cldb.22050150
  金属与金属基复合材料 |
高温(火灾)后Q355qNH桥梁耐候钢的力学性能试验研究
张鑫1,2, 尹航2, 赵而年1,2,*, 刘金辉2
1 山东建筑大学建筑结构加固改造与地下空间工程教育部重点实验室,济南 250101
2 山东建筑大学土木工程学院,济南 250101
Experiment on Post-fire Mechanical Properties of Q355qNH Bridge Weathering Steel
ZHANG Xin1,2, YIN Hang2, ZHAO Ernian1,2,*, LIU Jinhui2
1 Key Laboratory of Building Structural Retrofitting and Underground Space Engineering (Shandong Jianzhu University), Ministry of Education, Jinan 250101, China
2 School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China
下载:  全 文 ( PDF ) ( 5440KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究高温(火灾)后桥梁耐候钢的力学性能,开展了Q355qNH耐候钢在300~1 000 ℃高温受火后自然冷却、浸水冷却两种条件下的单调拉伸试验,研究了高温冷却后拉伸断口的微观特征,分析了受火温度和冷却方式对Q355qNH耐候钢应力-应变曲线和力学性能参数的影响规律,并将试验结果与建筑用钢高温冷却后的力学性能进行对比分析。结果表明:受火温度及冷却方式对Q355qNH耐候钢弹性模量的影响不显著;在800 ℃及以上受火后浸水冷却的试件应力-应变曲线无塑性平台,其他工况均存在明显的塑性平台;受火温度超过700 ℃时,冷却方式对Q355qNH耐候钢强度指标的影响逐渐显现;自然冷却后耐候钢的屈服强度和极限强度均减小,断后伸长率有所增大;浸水冷却条件下,随着受火温度升高,极限强度增大,而断后伸长率减小,屈服强度的变化规律波动较大。从强度指标对比来看,与建筑用钢相比,Q355qNH耐候钢整体表现出较好的抗火性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张鑫
尹航
赵而年
刘金辉
关键词:  Q355qNH耐候钢  高温(火灾)后  冷却方式  力学性能    
Abstract: To investigate the post-fire mechanical properties of bridge weathering steel (WS) after expose to high temperature, the tensile test of Q355qNH steel considering eight socking temperatures from 300 ℃ to 1 000 ℃ and two cooling methods, which were cooling in air (CA) and cooling in water (CW), was carried out. The microscopic fracture morphology under the two cooling methods was studied. The effect of high temperature treatment and cooling method on the stress-strain relationship and mechanical parameters of Q355qNH steel was analyzed, and the results were compared with that of building steels after expose to high temperature. Results show that high temperature treatment and cooling methods have little influence on the elastic modulus of Q355qNH steel. The plastic plateau of the stress-strain curve disappears when the WS specimens cooling in water after expose to 800 ℃ high temperature or above. Besides, there are obvious plastic plateau in other cases. When the socking temperature reaches 700 ℃ or above, the effect of cooling methods on the strength of Q355qNH steel is gradually appears, and the yield strength and ultimate strength with CA condition begin to decrease, however, the elongation after fracture increases. For the CW condition, the ultimate strength increases and the elongation after fracture decreases with the increases of socking temperature, and the variation of yield strength greatly fluctuates. Compared with results of building steels in exciting literatures, Q355qNH weathering steel shows a better fire resistance from the perspective of post-fire strength.
Key words:  Q355qNH bridge weathering steel    post-fire    cooling method    mechanical property
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TU502  
基金资助: 国家自然科学基金重点项目(52038006);山东省重点研发计划(重大科技创新工程)项目(2021CXGC011204)
通讯作者:  * 赵而年,工学博士,山东建筑大学土木工程学院副研究员、硕士研究生导师。2010年毕业于济南大学土木工程专业,获工学学士学位;2012年毕业于武汉理工大学结构工程专业,获工学硕士学位;2017年毕业于武汉理工大学土木工程专业,获工学博士学位。目前主要从事钢结构疲劳、新型竹木结构等方面的研究工作。发表学术论文20余篇,授权专利5项。zhaoern@sdjzu.edu.cn   
作者简介:  张鑫,工学博士,山东建筑大学首席岗教授、博士研究生导师,山东土木建筑学会理事长,同济大学兼职教授。1985年毕业于山东建筑工程学院工民建专业,获工学学士学位;1987年毕业于清华大学地震工程与防护工程专业,获工学硕士学位;2006年毕业于同济大学结构工程专业,获工学博士学位。目前主要从事混凝土结构、工程结构加固改造、结构抗火等方面的研究工作。发表学术论文150余篇,授权发明专利20余项。获2014年度国家技术发明二等奖,另获省部级科技进步奖二等奖6项,出版专著2部。
引用本文:    
张鑫, 尹航, 赵而年, 刘金辉. 高温(火灾)后Q355qNH桥梁耐候钢的力学性能试验研究[J]. 材料导报, 2023, 37(23): 22050150-6.
ZHANG Xin, YIN Hang, ZHAO Ernian, LIU Jinhui. Experiment on Post-fire Mechanical Properties of Q355qNH Bridge Weathering Steel. Materials Reports, 2023, 37(23): 22050150-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050150  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22050150
1 Peris-Sayol G, Paya-Zaforteza I, Balasch-Parisi S, et al. Journal of Performance of Constructed Facilities, 2016, 31(3),04016108.
2 Zhang X D, Ma R J, Chen A R. Journal of South China University of Technology (Natural Science Edition), 2019, 47(6),108(in Chinese).
张晓栋,马如进,陈艾荣.华南理工大学学报(自然科学版),2019,47(6),108.
3 Eurocode 1, Actions on structures part 1-2 general actions-actions on structures exposed to fire, EN.1991.1.2, 2002, Brussels, European Committee for Standardization, 2002, pp.10.
4 Huang Y, Young B. Construction and Building Materials, 2017, 157(30),654.
5 Zhang C, Jia B, Wang J.Construction and Building Materials, 2020, 252(12),119092.
6 Li G Q, Huang L, Zhang C. Journal of Tongji University(Natural Science), 2018,46(2),170(in Chinese).
李国强, 黄雷, 张超. 同济大学学报:自然科学版,2018,46(2),170.
7 Li G Q, Lv H B, Zhang C. Journal of Building Structures, 2017, 38(5),109(in Chinese).
李国强, 吕慧宝, 张超.建筑结构学报, 2017, 38(5),109.
8 Zhou X, Xue X, Shi Y, et al. Journal of Constructional Steel Research, 2021, 180,106608.
9 Wang W Y, Liu B, Li G Q. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(S1),30(in Chinese).
王卫永, 刘兵, 李国强.防灾减灾工程学报, 2012, 32(S1),30.
10 Ding F X, Yu Z W, Wen H L. Journal of Building Materials, 2006, 9(2),245(in Chinese).
丁发兴, 余志武, 温海林.建筑材料学报, 2006, 9(2),245.
11 Shi G, Wang S, Chen X, et al. Journal of Constructional Steel Research,2021,183,106767.
12 He G N, Jiang B, He B, et al. Materials Reports, 2022, 36(4), 20090318(in Chinese).
何国宁, 蒋波, 何博, 等. 材料导报, 2022, 36(4), 20090318.
13 Lu J, Liu H, Chen Z, et al. Journal of Constructional Steel Research, 2016, 121(6),291.
14 Wang X Q, Zhong T, Md Kamrul H. Journal of Constructional Steel Research, 2020, 164,105785.
15 Standard for building structural assessment after fire, CECS 252: 2009, China Planning Press, China, 2009, pp.55(in Chinese).
火灾后建筑结构鉴定标准,CECS 252: 2009, 中国计划出版社, 2009, pp.55.
16 High strength low alloy structural steels, GB/T 1591-2008, China Stan-dard Press, China, 2019, pp.4(in Chinese).
低合金高强度结构钢, GB/T 1591-2018, 中国标准出版社, 2019, pp.4.
[1] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[2] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[3] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[4] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[5] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[6] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed