Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12064-12069    https://doi.org/10.11896/cldb.19040245
  无机非金属及其复合材料 |
单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型
赵燕茹1, 刘芳芳1, 王磊1, 郭子麟2
1 内蒙古工业大学土木工程学院,呼和浩特 010051
2 山东同圆设计集团有限公司,济南 250000
Modeling of the Compressive Strength of Basalt Fiber Concrete Based on Pore Structure Under Single-side Freeze-Thaw Condition
ZHAO Yanru1, LIU Fangfang1, WANG Lei1, GUO Zilin2
1 School of Civil Engineering,Inner Mongolia University of Technology,Hohhot 010051, China
2 Shandong Tongyuan Design Group Co. Ltd,Jinan 250000, China
下载:  全 文 ( PDF ) ( 4007KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过单面冻融循环试验,研究不同玄武岩纤维掺量、冻融次数对混凝土抗冻性能和微观孔结构的影响;采用灰熵法分析微观孔结构参数对冻后混凝土抗压强度的影响规律;拟合得到不同冻融循环次数下玄武岩纤维贡献率公式;建立基于气孔比表面积、孔体积、玄武岩纤维贡献率的复合因素抗压强度模型。结果表明:不同纤维掺量下试件的抗压强度随冻融循环次数的增加逐渐减小,试件的含气量、气孔平均弦长和气孔间距系数随冻融次数的增加逐渐增大,试件的气孔比表面积随冻融次数的增加呈下降趋势。在本试验条件下纤维掺量为0.2%(体积分数)时混凝土抗冻性能最优。由灰熵分析可知,气孔比表面积和孔径小于100 μm的孔体积与抗压强度的关联度较高。复合因素抗压强度模型与气孔比表面积、孔体积、玄武岩纤维贡献率之间回归效果显著,可预测单面冻融循环后玄武岩纤维混凝土抗压强度与孔结构的定量关系,评估寒冷地区玄武岩纤维混凝土的耐久性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵燕茹
刘芳芳
王磊
郭子麟
关键词:  玄武岩纤维混凝土  单面冻融循环  灰熵  抗压强度模型    
Abstract: In this paper, the effects of different basalt fiber content and freeze-thaw times on the frost resistance and pore structure of concrete were stu-died through the single-side freeze-thaw cycle test. Grey entropy method was used to analyze the influence of pore structure parameters on the compressive strength of concrete after freeze-thaw cycles.The contribution rate formula of basalt fiber under different freeze-thaw cycles was obtained by fitting. The compressive strength model was established based on multiple factors such as pore specific surface area, pore volume and basalt fiber contribution rate. The results showed that the compressive strength of the different fiber contents specimens decreased with the increase of freeze-thaw cycles, the air content, average pore chord length and pore spacing coefficient of specimens increased with the increase of freeze-thaw cycles, and the specific surface area of pores decreased with the increase of freeze-thaw cycles. In this test, the frost resistance of concrete is optimal when the fiber content is 0.2vol%. According to the grey entropy analysis, the correlation degree of compressive strength with the pore specific surface area and pore diameter of less than 100 μm is the highest.The regression effect of the compressive strength and the specific surface area of pores, pore volume and the contribution rate of basalt fiber is significant, which can predict the quantitative relationship between the compressive strength of basalt fiber concrete and the pore structure after the single-side freeze-thaw cycle test, and evaluate the durability of basalt fiber concrete in cold areas.
Key words:  basalt fiber concrete    single-side freeze-thaw cycle    grey entropy    compressive strength model
                    发布日期:  2020-05-29
ZTFLH:  TU528  
基金资助: 国家自然科学基金(11762015;11362013)
通讯作者:  zhaoyanru710523@126.com   
作者简介:  赵燕茹,博士,教授,力学博士研究生导师、土木工程硕士研究生导师,现就职于内蒙古工业大学土木工程学院建筑工程系。主要研究混凝土力学性能及耐久性能、电子束云纹技术及其应用、纤维增强复合材料界面力学性能。
引用本文:    
赵燕茹, 刘芳芳, 王磊, 郭子麟. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069.
ZHAO Yanru, LIU Fangfang, WANG Lei, GUO Zilin. Modeling of the Compressive Strength of Basalt Fiber Concrete Based on Pore Structure Under Single-side Freeze-Thaw Condition. Materials Reports, 2020, 34(12): 12064-12069.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19040245  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12064
1 Yang Quanbing. Salt damage to concrete, China Architecture & Building Press,China,2012(in Chinese).
杨全兵.混凝土盐冻破坏,中国建筑工业出版社,2012.
2 Zhu Fazhu. Experimental study on salt-frost resistance of rubber aggregate concrete. Master's Thesis, Tianjin University,China,2007(in Chinese).
祝发珠.橡胶集料混凝土抗盐冻性能试验研究.硕士学位论文,天津大学,2007.
3 Zhu Yunzhe. Study on salt-frost resistance and modification mechanism of nano-modified concrete. Master's Thesis,Harbin Institute of Technology,China,2015(in Chinese).
朱昀喆.纳米改性混凝土的抗盐冻性能及其改性机理研究.硕士学位论文,哈尔滨工业大学,2015.
4 Shen Litao. Research on the mechanism and prevention of salt-frost damage of pavement concrete. Master's Thesis,Hebei University of Technology,China,2011(in Chinese).
申力涛.路面混凝土盐冻破坏机理与防治研究.硕士学位论文,河北工程大学,2011.
5 Peng Miao,Huang Haoxiong,Liao Qinhe,et al. Journal of Xiamen University of Technology,2012,20(1),83(in Chinese).
彭苗,黄浩雄,廖清河,等.厦门理工学院学报,2012,20(1),83.
6 Li Zhonghua. Study on the resistance of road concrete to salt-frost erosion in cold area. Ph.D. Thesis,Harbin Institute of Technology,China,2009(in Chinese).
李中华.寒冷地区道路混凝土抗盐冻剥蚀性能研究.博士学位论文,哈尔滨工业大学,2009.
7 Zhang Guoqiang. Study on salt-frost resistance of concrete. Master's Thesis, Tsinghua University,China,2005(in Chinese).
张国强.混凝土抗盐冻研究.硕士学位论文,清华大学,2005.
8 Jie Y,Yue W. Construction and Building Materials,2018,168,975.
9 Mautusinovic T,Sipusic J,Vrbos N. Cement and Concrete Research,2003,33,1801.
10 Pann K S, Yen T. ACI Materials Journal,2003,100(4), 311.
11 JGJ55-2011, Specification for mix proportion design of ordinary concrete, China Architecture & Building Press,China,2011(in Chinese).
中华人民共和国住房和城乡建设部.JGJ55-2011,普通混凝土配合比设计规程,中国建筑工业出版社,2011.
12 GB/T50081-2002, Standard for text methods of mechanical performance of ordinary concrete, China Architecture & Building Press,China,2002(in Chinese).
中华人民共和国建设部国家质量监督检验检疫总局.GB/T50081-2002,普通混凝土力学性能试验方法标准,中国建筑工业出版社,2002.
13 GB/T50082-2009, Standard for text methods of long-term performance and durability of ordinary concrete,China Architecture & Building Press,China,2009(in Chinese).
中华人民共和国住房和城乡建设部中华人民共和国国家质量监督检验检疫总局.GB/T50082-2009,普通混凝土长期性能和耐久性能试验方法标准,中国建筑工业出版社,2009.
14 Chen Xia,Yang Huaquan,Zhou Shihua,et al. Journal of Building Mate-rials,2011,14(2),257(in Chinese).
陈霞,杨华全,周世华,等.建筑材料学报,2011,14(2),257.
15 Li B, Mao Z. Construction and Building Materials,2017,147,79.
16 Valenza J J,Scherer W. Materials and Structures,2007,40,259.
17 Tang Wei,Zhang Guangtai,Dong Haijiao,et al. Materials Reports A:Review Papers,2014,28(11),123(in Chinese).
唐巍,张广泰,董海蛟,等.材料导报:综述篇,2014,28(11),123.
18 Li Weiming,Xu Jinyu,Shen Liujun,et al. Acta Materiae Compositae Sinica,2008(2),135(in Chinese).
李为民,许金余,沈刘军,等.复合材料学报,2008(2),135.
19 Du Dong,Pang Qinghua. Modern comprehensive evaluation methods and case selection, Tsinghua University Press,China,2005(in Chinese).
杜栋,庞庆华.现代综合评价方法与案例精选,清华大学出版社,2005.
20 Liu Sifeng,et al. Grey system theory and its application,Science Press,China,2017(in Chinese).
刘思峰,等.灰色系统理论及其应用,科学出版社,2017.
[1] 武斌, 安晓鹏, 史才军, 魏子易, 元强. 混凝土流变特性对其稳定性及浇筑后外观质量的影响[J]. 材料导报, 2020, 34(4): 4043-4048.
[2] 杨荣周, 徐颖, 陈佩圆, 葛进进. 干、湿养护下橡胶细集料水泥砂浆压缩破裂及能量演化特性[J]. 材料导报, 2020, 34(4): 4049-4055.
[3] 张学元, 吕春, 张道明, 王丽, 李扬. 稻草纤维在轻骨料混凝土中的增韧性能及劈裂抗拉强度预测模型[J]. 材料导报, 2020, 34(2): 2034-2038.
[4] 梁宁慧, 曹郭俊, 刘新荣, 代继飞, 缪庆旭. 基于三点弯曲试验的聚丙烯纤维桥接应力研究[J]. 材料导报, 2020, 34(2): 2153-2158.
[5] 李保亮, 尤南乔, 朱国瑞, 霍彬彬, 张亚梅. 蒸养条件下锂渣复合水泥的水化产物与力学性能[J]. 材料导报, 2019, 33(24): 4072-4077.
[6] 王家滨, 牛荻涛, 何晖. 多因素作用衬砌喷射混凝土中性化及预测模型[J]. 材料导报, 2019, 33(24): 4078-4085.
[7] 王静文, 王伟. 玄武岩纤维增强泡沫混凝土响应面多目标优化[J]. 材料导报, 2019, 33(24): 4092-4097.
[8] 王茹,万芹,王高勇. 纳米二氧化硅对苯丙共聚物/水泥复合胶凝材料凝结硬化的影响[J]. 材料导报, 2019, 33(22): 3712-3719.
[9] 巩位,余红发,麻海燕,达波. 全珊瑚海水混凝土配合比设计及评价方法[J]. 材料导报, 2019, 33(22): 3732-3737.
[10] 魏子易,安晓鹏,史才军,武斌,元强. 基于CFD模拟的新拌混凝土泵送压力损失预测[J]. 材料导报, 2019, 33(22): 3738-3743.
[11] 李保亮, 王月华, 潘东, 杨亮, 张亚梅. 电弧炉镍铁渣砂和镍铁渣粉的组成特性与适用性分析[J]. 材料导报, 2019, 33(22): 3752-3756.
[12] 王林, 王梦尧, 王佩勋, 卢京宇. 偶联剂改性玄武岩纤维增强水泥基复合材料力学性能[J]. 材料导报, 2019, 33(Z2): 273-277.
[13] 徐颖, 邓利蓉, 杨进超, 左联, 杜广报, 芦玉峰, 李莎莎. 磷酸镁水泥的制备及其快速修补应用研究进展[J]. 材料导报, 2019, 33(Z2): 278-282.
[14] 何欢, 杨荣俊, 文俊强, 唐芮枫, 王子明. 车桥耦合扰动对硫铝酸盐水泥混凝土修补材料性能的影响[J]. 材料导报, 2019, 33(Z2): 288-292.
[15] 李地红, 高群, 夏娴, 张景卫, 于海洋, 王艳君, 代函函, 许国栋. 基于BP神经网络的混凝土综合性能预测[J]. 材料导报, 2019, 33(Z2): 317-320.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed