Please wait a minute...
材料导报  2018, Vol. 32 Issue (21): 3831-3838    https://doi.org/10.11896/j.issn.1005-023X.2018.21.021
  高分子与聚合物基复合材料 |
桐油基紫外光固化材料体系构建的研究进展
杨卓鸿, 叶希韵, 黄家健, 梁斌, 邝少杰, 袁腾
华南农业大学材料与能源学院,广州 510642
Progress in the Construction of Tung Oil-based UV-curable Materials Systems
YANG Zhuohong, YE Xiyun, HUANG Jiajian, LIANG Bin, KUANG Shaojie, YUAN Teng
College of Materials and Energy, South China Agricultural University, Guangzhou 510642
下载:  全 文 ( PDF ) ( 1843KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 桐油基紫外光固化材料体系具有成膜速度快、固化温度低、污染小和可再生等优点,发展利用空间很大。利用桐油分子长链含有共轭双键的化学结构特征,可以对其进行化学改性,构建桐油基紫外光固化材料体系。本文综述了近年来桐油基紫外光固化材料体系的研究进展。首先简要介绍了桐油的化学结构与应用,然后着重论述了通过Diels-Alder反应来构建的桐油基紫外光固化材料体系的研究现状,还探讨了其他化学改性桐油构建紫外光固化体系的方法和固化效果。文章最后展望了桐油基紫外光固化材料体系的研究及应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨卓鸿
叶希韵
黄家健
梁斌
邝少杰
袁腾
关键词:  生物质  桐油  紫外光固化  Diels-Alder反应  化学改性    
Abstract: The tung oil-based UV-curable materials systems have displayed wide application potential by virtue of the advantages including fast film formation, less pollution and reproducibility. They can be constructed by modifying tung oil-based on the long chain conjugation in its molecules. This review is concerned with the research progress of tung oil-based UV-curable materials systems in recent years. It starts with a brief introduction about the chemical structure and application of tung oil, and subsequently provides an elaborate description upon the current research status of constructing tung oil-based UV-curable materials systems constructed via Diels-Alder reactions and other chemical modification methods. Finally, the paper ends with a prospective discussion for research and application of the UV-curable material system in the future.
Key words:  biomass    tung oil    UV-curing    Diels-Alder reaction    chemical modification
                    发布日期:  2018-11-21
ZTFLH:  TQ204  
基金资助: 国家自然科学基金(51673075; 21808070); 广东省自然科学基金(2018A030310349); 广东省科技计划项目(2016A010103027; 2016B090918123; 2016B090918091); 广州市科技计划项目(201803030003; 201704030085); 佛山市科技创新项目(2016AG101695); 广东省绿色化学产品技术重点实验室开放基金项目(GC201813); 华南农业大学青年科技人才培育专项基金; 国家大学生创新创业计划训练项目(201810564497; 201810564498; 201710564302; 201710564295)
作者简介:  杨卓鸿:男,1974年生,博士,教授,博士研究生导师,研究方向为生物基UV固化高分子材料 E-mail:yangzhuohong@scau.edu.cn;袁腾:通信作者,男,1987年生,博士,副教授,硕士研究生导师,研究方向为生物基UV固化高分子材料 E-mail:yuant@scau.edu.cn
引用本文:    
杨卓鸿, 叶希韵, 黄家健, 梁斌, 邝少杰, 袁腾. 桐油基紫外光固化材料体系构建的研究进展[J]. 材料导报, 2018, 32(21): 3831-3838.
YANG Zhuohong, YE Xiyun, HUANG Jiajian, LIANG Bin, KUANG Shaojie, YUAN Teng. Progress in the Construction of Tung Oil-based UV-curable Materials Systems. Materials Reports, 2018, 32(21): 3831-3838.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.21.021  或          http://www.mater-rep.com/CN/Y2018/V32/I21/3831
1 Zhang C, Garrison T F, Madbouly S A, et al.Recent advances in vegetable oil-based polymers and their composites[J].Progress in Polymer Science,2017,71:91.
2 Tathe D S, Jagtap R N.Biobased reactive diluent for UV-curable urethane acrylate oligomers for wood coating[J].Journal of Coatings Technology & Research,2015,12(1):187.
3 Zhong C, Cao Y, Li B, et al.Biofuels in China: Past, present and future[J].Biofuels Bioproducts & Biorefining,2010,4(3):326.
4 Greenfield J.Tung oil[J]. Journal of the American Oil Chemists Society,1959,36(11):565.
5 Bickford W G, Dupré E F, Mack C H, et al.The infrared spectra and the structural relationships between alpha- and beta-eleostearic acids and their maleic anhydride adducts[J].Journal of the American Oil Chemists Society,1953,30(9):376.
6 Biermann U, Butte W, Eren T, et al.Regio- and stereoselective diels-alder additions of maleic anhydride to conjugated triene fatty acid methyl esters[J].European Journal of Organic Chemistry,2007,2007(23):3859.
7 Yoshimura Y.Kinetics of reactions of methyl α-eleostearate with cresols[J].Journal of Polymer Science. Part A: Polymer Chemistry,1988,26(5):1343.
8 Yoshimura Y.Kinetics of reaction of methyl α-eleostearate with phenol[J].Journal of Polymer Science, Part A: Polymer Chemistry,1986,24(3):469.
9 Yuan C, Zhao X, Shao L, et al.Preparation and properties of Tung oil-based polyurethane[J].Transactions of Tianjin University,2014,20(4):273.
10 Meiorin C, Mosiewicki M A, Aranguren M I.Ageing of thermosets based on tung oil/styrene/divinylbenzene[J].Polymer Testing,2013,32(2):249.
11 Humar M, Lesar B.Efficacy of linseed- and tung-oil-treated wood against wood-decay fungi and water uptake[J].International Biodeterioration & Biodegradation,2013,85(7):223.
12 Liu C, Dai Y, Wang C, et al.Phase-separation dominating mechanical properties of a novel tung-oil-based thermosetting polymer[J].Industrial Crops & Products,2013,43(5):677.
13 Fang S, Zhang H, Zhang B, et al.A study of Tung-oil-lime putty—A traditional lime based mortar[J].International Journal of Adhesion & Adhesives,2014,48(48):224.
14 Mosiewicki M A, Casado U, Marcovich N E, et al.Moisture dependence of the properties of composites made from tung oil based polyurethane and wood flour[J].Journal of Polymer Research,2012,19(2):1.
15 Li M, Li S, Xia J, et al.Tung oil based plasticizer and auxiliary stabilizer for poly(vinyl chloride)[J].Materials & Design,2017,122:366.
16 Wang M, Song X, Jiang J, et al.Plasticization and thermal behavior of hydroxyl and nitrogen rich group-containing tung-oil-based ester plasticizers for PVC[J].New Journal of Chemistry,2017,42(4):2422.
17 Qi D H, Yang K, Zhang D, et al.Experimental investigation of a turbocharged CRDI diesel engine fueled with Tung oil-diesel-ethanol microemulsion fuel[J].Renewable Energy,2018,113:1201.
18 Li H, Cui Y, Li Z, et al.Fabrication of microcapsules containing dual-functional tung oil and properties suitable for self-healing and self-lubricating coatings[J].Progress in Organic Coatings,2018,115:164.
19 Escouvois M.From vegetable oils to polyurethanes: Synthetic routes to polyols and main industrial products[J].Polymer Reviews,2012,52(1):38.
20 Wang Z X, Wang J L, Gu L Z.Synthesis and characterization of tung oil-based waterborne polyurethane[J].Paint & Coatings Industry,2012,42(7):49(in Chinese).
王正祥,王建龙,顾丽争.桐油基水性聚氨酯的合成与表征[J].涂料工业,2012,42(7):49.
21 Li Y, Wang M, Zhou Y.Research on characterization and reaction mechanism of the phenolic resin binary modified by boric acid & tung oil[J].Guangdong Chemical Industry,2010,37(6):5(in Chinese).
李屹,王满力,周元康.硼酸-桐油双改性酚醛树脂的表征及反应机理研究[J].广东化工,2010,37(6):5.
22 Sharma V, Das L, Pradhan R C, et al.Physical properties of tung seed: An industrial oil yielding crop[J]. Industrial Crops & Pro-ducts,2011,33(2):440.
23 Huang J, Yuan T, Ye X, et al.Study on the UV curing behavior of tung oil: Mechanism, curing activity and film-forming property[J].Industrial Crops & Products,2018,112:61.
24 Zhang H Z, Zhou H Y, Wang J X.Synthesis, characterization and UV curable property of acrylate modified tung oil-based emulsifier[J].Chemical Industry & Engineering Progress,2017,36(10):3860(in Chinese)
张海召,周宏勇,王家喜,等.丙烯酸酯改性桐油基乳化剂的合成、表征及光固化性能[J].化工进展,2017,36(10):3860.
25 Liu C, Liu Z, Tisserat B H, et al.Microwave-assisted maleation of tung oil for bio-based products with versatile applications[J].Industrial Crops & Products,2015,71:185.
26 Huang Y, Ye G, Yang J.Synthesis and properties of UV-curable acrylate functionalized tung oil based resins via, Diels-Alder reaction[J].Progress in Organic Coatings,2015,78:28.
27 Huang Y, Pang L, Wang H, et al.Synthesis and properties of UV-curable tung oil based resins via, modification of Diels-Alder reaction, nonisocyanate polyurethane and acrylates[J].Progress in Organic Coatings,2013,76(4):654.
28 Tan X L, Deng J R, Luo S, et al.Preparation and properties of tung oil-based waterborne UV-curable resin[J].Fine Chemicals,2016,33(8):862(in Chinese).
谭湘璐,邓剑如,罗赛,等.桐油基水性光固化树脂的合成及性能[J].精细化工,2016,33(8):862.
29 Thames S F, Subramanian R.Cationic ultraviolet curable coatings from Chinese melon oil and tung oil[J].Macromolecules New Frontiers,1998,2:1011.
30 Wu J, Zhang T, MaG, et al. Synthesis of a tung oil-rosin adduct via the diels-alder reaction: Its reaction mechanism and properties in an ultraviolet-curable adhesive[J].Journal of Applied Polymer Science,2013,130(6):4201.
31 Yang X, Li S, Xia J, et al.Novel renewable resource-based UV-curable copolymers derived from myrcene and tung oil: Preparation, characterization and properties[J].Industrial Crops & Products,2015,63:17.
32 Thanamongkollit N, Miller K, Soucek M D.Synthesis of UV-curable tung oil and UV-curable tungoil based alkyd[J].Progress in Organic Coatings,2012,73(4):425.
33 Chittavanich P, Miller K, Soucek M D.A photo-curing study of a pigmented UV-curable alkyd[J].Progress in Organic Coatings,2012,73(4):392.
34 Zhou J, Liu Y, Hu Y, et al.Synthesis of novel urushiol-like compounds from tung oil using silica-supported phosphotungstic heteropoly acid catalyst[J].Industrial Crops & Products,2016,94:424.
35 Zhou C, Hu Y, Yang Z, et al.Facile synthesis and characterization of urushiol analogues from tung oil via ultraviolet photocatalysis[J].Progress in Organic Coatings,2018,120:240.
36 Yan M, Lin F, et al.Dynamics of hyperbranched polymers derived from acrylated epoxidized soybean oil[J].Polymer,2017,125:117.
37 Zhang H, Zhao T Y, Ben Newland, et al.Catechol functionalized hyperbranched polymers as biomedical materials[J].Progress in Polymer Science,2018,78:47.
38 Wang A, Xu H, Zhou Q, et al.A new all-solid-state hyperbranched star polymer electrolyte for lithium ion batteries: Synthesis and electrochemical properties[J].Electrochimica Acta,2016,212:372.
39 Yan D, Gao C, Frey H.Hyperbranched polymers: Synthesis, pro-perties, and applications[M].America:Wiley,2011:415.
40 Mirshahi F, Bastani S, Sari M G.Studying the effect of hyperbranched polymer modificationon the kinetics of curing reactions and physical/mechanical properties of UV-curable coatings[J].Progress in Organic Coatings,2016,90:187.
41 Andjelkovic D, Lu Y, Kessler M, et al.Novel rubbers from the cationic copolymerization of soybean oils and dicyclopentadiene, 2-mechanical and damping properties[J].Macromolecular Materials & Engineering,2009,294(8):472.
42 Smith M, Payne A, Edwards K, et al.Effect ofmicrowave cure on the thermo-mechanical properties of tung oil-based/carbon nanotube composites[J].Coatings,2015,5:557.
43 Ni J, Feng G, Meng Z, et al.Reinforced lubrication of vegetable oils with graphene additive in tapping ADC12 aluminum alloy[J].International Journal of Advanced Manufacturing Technology,2018,94(1-4):1.
44 Wei S, Choy S, Cheng H, et al.Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol[J].Industrial Crops & Products,2017,97:65.
45 Chen M, Zhong M, Johnson J.Light-controlled radical polymerization: Mechanisms, methods, and applications[J].Chemical Reviews,2016,116:10167.
[1] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[2] 吴晓燕, 谭维, 罗才武, 张晓文, 李密, 房琦, 谭文发. 以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能[J]. 材料导报, 2019, 33(12): 1949-1954.
[3] 王倩, 谢海波. DBU/DMSO/CO2溶剂体系中纤维素聚离子液体的合成及性质[J]. 材料导报, 2019, 33(10): 1768-1772.
[4] 余周辉,赵培仲,胡芳友. ES/CEP共混树脂紫外光固化行为及性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 263-267.
[5] 史长亮, 邢宝林, 曾会会, 张双杰, 郭晖, 贾建波, 张传祥, 田野, 朱阿辉, 张青山. 梯级孔生物质活性炭的制备及其电容特性研究[J]. 材料导报, 2018, 32(19): 3318-3324.
[6] 何姗姗, 李薇, 王灵志, 卢晗, 张宏亮. 木质与草本生物质燃烧特性及工况优化研究[J]. 《材料导报》期刊社, 2017, 31(6): 50-55.
[7] 吴明山, 马建锋, 刘杏娥, 田根林, 尚莉莉, 杨淑敏. 生物质基碳包覆纳米磁性颗粒的研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 28-34.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed